
1/3

August 5, 2016

The case of the hung Explorer window
devblogs.microsoft.com/oldnewthing/20160805-00

Raymond Chen

A Windows Insider reported that Explorer stopped responding whenever they opened their

Downloads folder.

We were able to obtain a memory dump during the hang, and observed that most threads

were waiting for the loader lock. The loader lock was being held by this thread:

ntdll!RtlpWaitOnCriticalSection

ntdll!RtlpEnterCriticalSectionContended

GdiPlus!GdiplusStartupCriticalSection::{ctor}

GdiPlus!GdiplusStartup

ShellExtension+...

ShellExtension+...

ShellExtension+...

ntdll!LdrpCallInitRoutine

ntdll!LdrpInitializeNode

ntdll!LdrpInitializeGraphRecurse

ntdll!LdrpInitializeGraph

ntdll!LdrpPrepareModuleForExecution

ntdll!LdrpLoadDllInternal

ntdll!LdrpLoadDll

ntdll!LdrLoadDll

KERNELBASE!LoadLibraryExW

[...]

combase!CoCreateInstanceEx

combase!CoCreateInstance

windows_storage!_SHCoCreateInstance

windows_storage!CRegFolder::_CreateCachedRegFolder

windows_storage!CRegFolder::_CreateCachedRegFolder

windows_storage!CRegFolder::_BindToItem

windows_storage!CRegFolder::BindToObject

windows_storage!CShellItem::_BindToHandlerLegacy

windows_storage!CShellItem::BindToHandler

[...]

explorerframe!CNscEnumTask::InternalResumeRT

explorerframe!CRunnableTask::Run

This thread was waiting on a GDI+ critical section, which was being held here:

https://devblogs.microsoft.com/oldnewthing/20160805-00/?p=94035

2/3

KERNELBASE!WaitForSingleObjectEx

GdiPlus!BackgroundThreadShutdown

GdiPlus!InternalGdiplusShutdown

GdiPlus!GdiplusShutdown

shell32!CGraphicsInit::~CGraphicsInit

shell32!CImageFactory::{dtor}

shell32!CImageFactory::`scalar deleting destructor'

shell32!CImageFactory::Release

shell32!IsImageSizeSufficientForRequestedSize

shell32!_ExtactIconFromImage

shell32!_ExtractIconsFromImage

shell32!ExtractIconsUsingResourceManager

shell32!_ExtractIcons

shell32!SHDefExtractIconW

[...]

windows_storage!CLoadSystemIconTask::InternalResumeRT

windows_storage!CRunnableTask::Run

windows_storage!CShellTask::TT_Run

windows_storage!CShellTaskThread::ThreadProc

windows_storage!CShellTaskThread::s_ThreadProc

It should now be clear what the problem is.

On the second thread, GDI+ is shutting down because its last client decided to uninitialize it.

(In this case, the last client was the system image list, which extracting the icon for a Store

app, and Store app icons are PNG files, which is why GDI+ entered the picture.)

GDI+ is waiting for its worker thread to exit so it can finish cleaning up.

Just at this moment, the folder tree was populating itself on the first thread, and it found a

third party shell extension. It dutifully loaded the third party shell extension (because that’s

what shell extensions are for), and that shell extension, as part of its DLL_PROCESS_ATTACH

tried to initialize GDI+.

Here comes the deadlock.

GDI+ was prepared for this possibility that somebody would try to initialize GDI+ while

GDI+ was already in the process of shutting itself down. It solves this problem by making the

shutdown run to completion (seeing as it already started), and then starting a new

initialization pass.

That shutdown is waiting for a worker thread to finish up and exit. But the thread cannot exit

until it sends out its DLL_THREAD_DETACH notifications. And since DLL notifications are

serialized, the DLL_THREAD_DETACH cannot be sent until the DLL_PROCESS_ATTACH

completes. But the DLL_PROCESS_ATTACH for the third party shell extension is waiting for

GDI+. There’s our deadlock.

3/3

The root cause for this is that the third party shell extension is initializing GDI+ inside its

DLL_PROCESS_ATTACH . This is already highly suspect even without any special insight into

GDI+, and the suspicious are confirmed in the documentation for GdiplusStartup :

Do not call GdiplusStartup or GdiplusShutdown in DllMain or in any function that is
called by DllMain.

My guess is that the vendor who wrote this shell extension thinks that the rule doesn’t apply

to them because they passed SuppressBackgroundThread = true , thinking that by

removing the background thread, they successfully avoided any deadlocks with another

thread. It didn’t occur to them that the other thread might not be the GDI+ background

thread.

It also didn’t occur to them that GDI+ might already be initialized with a background thread.

Furthermore, suppose the component that initialized GDI+ first (with a background thread)

uninitialized GDI+ first. That call to GdiplusShutdown will not shut down GDI+ because

there is still an outstanding client. And then when their DLL unloads, they call

GdiplusShutdown , and that will cause a true shutdown of GDI+, which includes shutting

down that background thread that they thought they had suppressed.¹

So basically it was a bad idea all around.

I transferred this issue to the application compatibility team for outreach to the vendor, who

happens to be a major corporation, so hopefully they can spare some developers to fix the

deadlock.

Bonus chatter: Identifying the vendor was a bit tricky because of the extremely vague DLL

name.

Bonus chatter: When I originally composed the email with my analysis of the bug, I wrote

application compatibility outrage instead of application compatibility outreach.

Unfortunately, I caught the mistake before hitting Send.

¹Closer investigation shows that my guess was incorrect. The code that calls

GdiplusStartup leaves the background thread enabled, so I have no idea how this ever

worked in isolation. It “works” only because the calls to GdiplusStartup and

GdiplusShutdown are no-op because somebody else initialized GDI+ first, and is still using

GDI+ at the time they unload.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

