
1/5

August 3, 2016

Using #pragma detect_mismatch to help catch ODR
violations

devblogs.microsoft.com/oldnewthing/20160803-00

Raymond Chen

One of the more insidious problems you may encounter are those traced back to violations of

the C++ One Definition Rule. As a general rule, if the conflicting definitions occur in separate

translation units, the behavior is undefined, but no diagnostic is required. The lack of a

diagnostic means that if two translation units define a type differently (say, because they

were compiled with different compile-time configurations), you may not notice a problem

until you start dealing with mysterious memory corruption.

These types of bugs are not fun to diagnose.

If you use the Microsoft Visual C++ toolchain, then you can use the #pragma

detect_mismatch("name", "value")  directive to give the linker some help in identifying

mismatched definitions. Specifically, the linker verifies that all such declarations with the

same name also have the same value.

The idea here is that if you have something that is declared differently based on compilation

settings, you can emit a different #pragma detect_mismatch("name", "value")  for each

version, using the same name but a different value. The linker will then verify that everybody

used the same version of the header file.

Here’s an example:

https://devblogs.microsoft.com/oldnewthing/20160803-00/?p=94015
https://en.wikipedia.org/wiki/One_Definition_Rule


2/5

// This is a fake mutex that does no locking.

struct fake_mutex

{

void lock() {}

void unlock() {}

};

class Contoso

{

#ifdef SINGLE_THREADED

  // single-threaded doesn't need a mutex.

  typedef fake_mutex mutex_t;

#else

  // multi-threaded needs a true mutex.

  typedef std::mutex mutex_t;

#endif


public:

 Contoso();


 void Activate()

 {

    std::lock_guard<mutex_t> lock(object_mutex);

#ifndef NDEBUG

   isActivated = true;

#endif

   ... business logic to activate the object ...

 }


 void Charge()

 {

    std::lock_guard<mutex_t> lock(object_mutex);

   // You must activate before you can charge.

   assert(!isActivated);

   ... business logic to charge the object ...

 }


private:

 ...

 mutex_t object_mutex;

#ifndef NDEBUG

 bool isActivated = false;

#endif

};

If this class is used in a project, but one file in the project is compiled with

SINGLE_THREADED  and another file is compiled without SINGLE_THREADED , or if the two

files disagree on NDEBUG , then you have an ODR violation. In practice, this means that bad

things will happen if the two files try to access the same Contoso  object.



3/5

You can use #pragma detect_mismatch  to encode which definition is being used. This

allows the linker to detect whether a single project uses multiple conflicting definitions.



4/5

// This is a fake mutex that does no locking.

struct fake_mutex

{

void lock() {}

void unlock() {}

};

class Contoso

{

#ifdef SINGLE_THREADED

  // single-threaded doesn't need a mutex.

  typedef fake_mutex mutex_t;

  #pragma detect_mismatch("Contoso threading", "Single");

#else

  // multi-threaded needs a true mutex.

  typedef std::mutex mutex_t;

  #pragma detect_mismatch("Contoso threading", "Multi");

#endif


#ifdef NDEBUG

  #pragma detect_mismatch("Contoso debug", "Nondebug");

#else

  #pragma detect_mismatch("Contoso debug", "Debug");

#endif


public:

 Contoso();


 void Activate()

 {

    std::lock_guard<mutex_t> lock(object_mutex);

#ifndef NDEBUG

   isActivated = true;

#endif

   ... business logic to activate the object ...

 }


 void Charge()

 {

    std::lock_guard<mutex_t> lock(object_mutex);

   // You must activate before you can charge.

   assert(!isActivated);

   ... business logic to charge the object ...

 }


private:

 ...

 mutex_t object_mutex;

#ifndef NDEBUG

 bool isActivated = false;

#endif

};



5/5

You can see the directive in action in this Channel 9 video starring C++ library master

Stephan T. Lavavej. The detect_mismatch  trick appears around timecode 29:30.

Note of course that you can use this technique for things other than catching ODR violations.

Raymond Chen

Follow







https://channel9.msdn.com/Series/C9-Lectures-Stephan-T-Lavavej-Advanced-STL/C9-Lectures-Stephan-T-Lavavej-Advanced-STL-3-of-n
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

