
1/3

July 27, 2016

Why does setting the horizontal scroll bar range for the
first time also set the vertical range, and vice versa?

devblogs.microsoft.com/oldnewthing/20160727-00

Raymond Chen

A customer observed that if a window has never set any scroll bar parameters, then it reports

its scroll bar range as nMin = nMax = 0 in both horizonal and vertical directions. But once

you set the (say) horizontal scroll bar range to anything (say, nMin = 0, nMax = 999), then

the vertical scroll bar range reports itself as nMin = 0, nMax = 100. Why does changing one

scroll bar affect the other?

For convenience, let’s use the notation [nMin, nMax] to represent a scroll bar range.

SCROLLINFO si = { sizeof(si), SIF_RANGE };

GetScrollInfo(hwnd, SB_HORZ, &si); // produces [0, 0]

GetScrollInfo(hwnd, SB_VERT, &si); // produces [0, 0]

SetScrollRange(hwnd, SB_HORZ, 0, 999);

GetScrollInfo(hwnd, SB_HORZ, &si); // produces [0, 999]

GetScrollInfo(hwnd, SB_VERT, &si); // produces [0, 100]

This is a case of incomplete virtualization. Every standard scroll bar defaults to a range of [0,

100]. In practice, few windows create scroll bars, so the window manager doesn’t allocate

scroll bar information until a window activates its scroll bars. But once a window activates

any scroll bar, the window manager allocates scroll bar information for both directions.

This behavior came from 16-bit Windows, so let’s calculate how much memory 16-bit

Windows is saving by using this one weird trick. The scroll bar information for each direction

is 8 bytes (four 16-bit values: minimum, maximum, position, and page size), and let’s say that

heap overhead is two pointers per allocation. Delay-allocating the scroll bar information in

one direction on a 16-bit system means that instead of putting 8 bytes of memory in the main

heap allocation for a window, you instead put just 2 bytes of memory in the main heap

allocation, but an additional cost of 8 + 2 × 2 = 12 bytes of heap memory if the window

actually uses the scroll bar.

Let’s say that ten percent of the windows in the system use scroll bars, a rather high estimate,

I think, especially when you consider dialog boxes which have tons of windows without any

scroll bars.¹ With that assumption, the average cost per window drops from 8 bytes to 2 +

https://devblogs.microsoft.com/oldnewthing/20160727-00/?p=93965
https://msdn.microsoft.com/library/windows/desktop/bb787587(v=vs.85).aspx

2/3

10% × 12 = 3.2 bytes per window for a single scroll bar direction, or from 16 bytes to 6.4 bytes

for the pair.

We can save even more memory by putting the horizontal and vertical scroll bar info together

in the same allocation, since that reduces the heap overhead, and it means that you need to

leave only one forwarding pointer behind to cover two blocks of data. With this additional

assumption, the average cost per window drops from 16 bytes to 2 + 10% × 16 = 3.6 bytes 2 +

10% × 20 = 4 bytes.

This savings by using combined storage for both directions does mean that the cost for a

window that uses only one of the two directions is 2 + 16 = 18 bytes 2 + 20 = 22 bytes, when

it would have been 2 + (2 + 12) = 16 bytes if the two allocations had been separate. Most of

the time, a window that has a horizontal scroll bar will also have a vertical scroll bar. (Edit

boxes are a notable exception.) If we say that half of the time will a window have only one of

the scroll bars, then the tradeoff is a 50% chance of 16 bytes against an 50% chance of 4 + 24

= 28 bytes, for an average cost of 22 bytes per window, which is no better than the 22 bytes

per window from combining the two allocations.

Given that 16-bit Windows had only 64KB of memory for all window-related objects,

reducing the base memory cost of a window from 102 bytes to 88 bytes is a huge savings.

Okay, let’s return to the present. If standard scroll bars default to [0, 100], why does reading

the scroll bar range of an uninitialized scroll bar return [0, 0] instead of [0, 100]?

Actually, reading the scroll bar range of an uninitialized scroll bar doesn’t return a range of

[0, 0]. What’s actually happening is that the call to GetScrollInfo is failing with the error

code ERROR_NO_SCROLLBARS , and you are reading back the zero values that were already in

the SCROLLINFO structure that you passed in.

When you call SetScrollRange (or SetScrollInfo or SetScrollPos) the window

manager initializes the scroll bar information on demand, and that’s where the default values

of [0, 100] are established. Those values then get read out by the subsequent calls to Get‐

ScrollInfo .

Basically, Windows pretends that all windows have a scroll bar with a range of [0, 100], but it

doesn’t allocate any memory to record that information until you use it.

Exercise: Theoretically, the window manager could also have avoided allocating the

memory if you set the range to [0, 100], since that’s the default range. Why doesn’t it bother

with this optimization?

What you’re seeing is that the virtualization is incomplete. When you try to read the scroll

range from an uninitialized scroll bar, the GetScrollInfo function could have reported a

range of [0, 100] instead of simply failing the call. Or possibly report a range of [0, 100] and

https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933
https://blogs.msdn.microsoft.com/oldnewthing/20050315-00/?p=36183

3/3

fail the call, reporting the default range to cover for the programs (like the one above) that

ignore the return value.

My guess is that the original designers of the window manager chose to expose this

“uninitialized” state explicitly on the off chance that some program might² want to check

whether scroll bars are initialized so that they can perform some super-precise optimization.

Though in practice I bet nobody does.

¹ I just ran a quick test on my system. My guesses were waaaaaaay too generous.

Window type With scroll bars Total Percent

Top-level 1 465 0.21%

Child 7 1034 0.68%

Overall 8 1499 0.53%

² This design principle dates back to the days when Windows assumed that programmers

were super-experts who wanted fine control of everything by default. “Here’s your fine

control. Good luck.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

