
1/5

June 29, 2016

How can I detect whether the Game Bar is covering my
window?

devblogs.microsoft.com/oldnewthing/20160629-00

Raymond Chen

Pressing the Win + G hotkey opens the Game Bar, which lets you record game clips and

screenshots. Actually, I use it a lot even for programs that aren’t games: It’s great for taking

video clips of a bug.

Anyway, maybe you have a program that wants to know when the Game Bar is on screen. For

example, if you’re a game, you may want to pause the game automatically when the user is

trying to configure their screen capture.

If you are writing a Store app, you can register for Game Bar events. Here’s the short version

for C# apps:

if (Windows.Gaming.UI.GameBar.Visible) {

 the game bar is visible;

}

if (Windows.Gaming.UI.GameBar.IsInputRedirected) {

 the game bar has input;

}

Windows.Gaming.UI.GameBar.VisibilityChanged +=

 (s, e) => { the visibility changed };

Windows.Gaming.UI.GameBar.IsInputRedirectedChanged +=

 (s, e) => { the input state changed };

(Of course, you can avoid having to type Windows.Gaming.UI all the time by using the

using statement, but I’m writing it out just to make it explicit what’s going on.)

If you are a desktop app, you will have to talk to the ABI. It’s not too difficult, although it is a

bit more tedious.

Continuing our crash course in projection:

Call static method

https://devblogs.microsoft.com/oldnewthing/20160629-00/?p=93775
http://windows.microsoft.com/en-us/windows-10/open-game-bar

2/5

ABI

IWidgetStatics* widgetStatics;

GetActivationFactory(L"Widget", &widgetStatics);

widgetStatics->Foo();

C++/CX Widget::Foo();

C# Widget.Foo();

JavaScript Widget.foo();

At the ABI level, static members of a Windows Runtime class are represented as instance

members of the class’s activation factory. By convention, the interface name for static

members is the runtime class name, followed by the word Statics .

Okay, we now know just enough to be dangerous. Start with the scratch program and make

these changes. (Remember, Little Programs do little to no error checking.)

#include <wrl/client.h>

#include <wrl/event.h>

#include <wrl/wrappers/corewrappers.h>

#include <windows.gaming.ui.h>

#include <EventToken.h>

#include <tchar.h> // Huh? Why are you still using ANSI?

namespace WRL = Microsoft::WRL;

namespace awf = ABI::Windows::Foundation;

namespace gameui = ABI::Windows::Gaming::UI;

WRL::ComPtr<gameui::IGameBarStatics> g_gameBarStatics;

boolean g_isVisible;

boolean g_isInputRedirected;

EventRegistrationToken g_tokenVisibility;

EventRegistrationToken g_tokenInput;

After including a few header files and declaring some namespace aliases, we create a few

global variables to keep track of our state. In a real program, these would probably be

instance members of some C++ class, but I’m being lazy.

https://blogs.msdn.microsoft.com/vcblog/2012/10/19/ccx-part-4-of-n-static-member-functions/
https://blogs.msdn.microsoft.com/oldnewthing/20030723-00/?p=43073

3/5

void CheckGameBarVisibility(HWND hwnd)

{

 boolean isVisible;

 g_gameBarStatics->get_Visible(&isVisible);

 if (g_isVisible != isVisible)

 {

 g_isVisible = isVisible;

 InvalidateRect(hwnd, nullptr, TRUE);

 }

}

void CheckGameBarInput(HWND hwnd)

{

 boolean isInputRedirected;

 g_gameBarStatics->get_IsInputRedirected(&isInputRedirected);

 if (g_isInputRedirected != isInputRedirected)

 {

 g_isVisible = isVisible;

 InvalidateRect(hwnd, nullptr, TRUE);

 }

}

These two little functions read the current visibility and input redirection states of the game

bar, and if they changed, we invalidate the window. We learned about property access a little

while ago. In our case, the properties are static, so the property accessors live on the

Statics interface.

4/5

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 Windows::Foundation::GetActivationFactory(WRL::Wrappers::HStringReference(

 RuntimeClass_Windows_Gaming_UI_GameBar).Get(), &g_gameBarStatics);

 auto visibilityHandler = WRL::Callback<awf::IEventHandler<IInspectable*>>(

 [hwnd](IInspectable*, IInspectable*)

 {

 CheckGameBarVisibilty(hwnd);

 return S_OK;

 });

 g_gamebarStatics->add_VisibilityChanged(visibilityHandler.Get(),
&g_tokenVisibility);

 auto inputHandler = WRL::Callback<awf::IEventHandler<IInspectable*>>(

 [hwnd](IInspectable*, IInspectable*)

 {

 CheckGameBarInput(hwnd);

 return S_OK;

 });

 g_gamebarStatics->add_IsInputRedirectedChanged(inputHandler.Get(), &g_tokenInput);

 CheckGameBarVisibility(hwnd);

 CheckGameBarInput(hwnd);

 return TRUE;

}

We create the game bar statics by asking for the IGameBarStatics interface from the

activation factory. From there, we register two event handlers, one to be called when the

visibility changes, and another to be called when input redirection changes. In both cases, we

respond to the event by checking the new visiblity or input redirection state.

After registering the handlers, we manually check the visibility and input to get the initial

values set up properly.

void

OnDestroy(HWND hwnd)

{

 g_gameBar->remove_VisibilityChanged(g_tokenVisibility);

 g_gameBar->remove_IsInputRedirectedChanged(g_tokenInput);

 g_gameBar.Reset();

 PostQuitMessage(0);

}

Naturally, we need to clean up when we’re done.

5/5

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

 PCTSTR visibleMessage =

 g_isVisible ? TEXT("GameBar is visible")

 : TEXT("GameBar is not visible");

 TextOut(pps->hdc, 0, 0, visibleMessage, _tcslen(visibleMessage));

 PCTSTR inputMessage =

 g_isInputRedirected ? TEXT("GameBar has taken input")

 : TEXT("GameBar does not have input");

 TextOut(pps->hdc, 0, 20, inputMessage, _tcslen(inputMessage));

}

Our PaintContent function prints the current state of the game bar: Is it visible? Does it

have input?

And that’s it. Run this program, press the Win + G hotkey to call up the game bar, and

observe that the program updates its window to reflect the game bar state.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

