
1/4

June 27, 2016

If I have multiple attached keyboards, how can I read
input from each one individually?

devblogs.microsoft.com/oldnewthing/20160627-00

Raymond Chen

Raw Input is a feature of Windows that lets you obtain keyboard, mouse, or generic HID

input. Okay, the generic HID input is nice, but the thing that is interesting today is the fact

that the keyboard and mouse input is tagged with the device that generated it. This means

that if you have multiple keyboards connected to your computer (say, the laptop integrated

keyboard plus an external USB keyboard), you can distinguish the two input sources.

Let’s do it.

Remember that Little Programs do very little to no error checking.

As usual, start with the scratch program and make these change:

https://devblogs.microsoft.com/oldnewthing/20160627-00/?p=93755
https://msdn.microsoft.com/library/windows/desktop/ms645536(v=vs.85).aspx
https://blogs.msdn.microsoft.com/oldnewthing/20030723-00/?p=43073

2/4

#include <strsafe.h>

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 g_hwndChild = CreateWindow(TEXT("listbox"), NULL,

 LBS_HASSTRINGS | WS_CHILD | WS_VISIBLE | WS_VSCROLL,

 0, 0, 0, 0, hwnd, NULL, g_hinst, 0);

 RAWINPUTDEVICE dev;

 dev.usUsagePage = 1;

 dev.usUsage = 6;

 dev.dwFlags = 0;

 dev.hwndTarget = hwnd;

 RegisterRawInputDevices(&dev, 1, sizeof(dev));

 return TRUE;

}

void

OnDestroy(HWND hwnd)

{

 RAWINPUTDEVICE dev;

 dev.usUsagePage = 1;

 dev.usUsage = 6;

 dev.dwFlags = RIDEV_REMOVE;

 dev.hwndTarget = hwnd;

 RegisterRawInputDevices(&dev, 1, sizeof(dev));

 PostQuitMessage(0);

}

First, we create a list box which we will use to display the input we receive.

Next, we register our window to receive raw keyboard input. The magic numbers for

keyboard are Usage Page 1 and Usage 6. These magic numbers come from the USB HID

specification.

The flip side of the coin is that we unregister when our window is destroyed.

Now the fun part: Receiving the input!

3/4

#define HANDLE_WM_INPUT(hwnd, wParam, lParam, fn) \

 ((fn)((hwnd), GET_RAWINPUT_CODE_WPARAM(wParam), \

 (HRAWINPUT)(lParam)), 0)

void OnInput(HWND hwnd, WPARAM code, HRAWINPUT hRawInput)

{

 UINT dwSize;

 GetRawInputData(hRawInput, RID_INPUT, nullptr,

 &dwSize, sizeof(RAWINPUTHEADER));

 RAWINPUT *input = (RAWINPUT *)malloc(dwSize);

 GetRawInputData(hRawInput, RID_INPUT, input,

 &dwSize, sizeof(RAWINPUTHEADER));

 if (input->header.dwType == RIM_TYPEKEYBOARD) {

 TCHAR prefix[80];

 prefix[0] = TEXT('\0');

 if (input->data.keyboard.Flags & RI_KEY_E0) {

 StringCchCat(prefix, ARRAYSIZE(prefix), TEXT("E0 "));

 }

 if (input->data.keyboard.Flags & RI_KEY_E1) {

 StringCchCat(prefix, ARRAYSIZE(prefix), TEXT("E1 "));

 }

 TCHAR buffer[256];

 StringCchPrintf(buffer, ARRAYSIZE(buffer),

 TEXT("%p, msg=%04x, vk=%04x, scanCode=%s%02x, %s"),

 input->header.hDevice,

 input->data.keyboard.Message,

 input->data.keyboard.VKey,

 prefix,

 input->data.keyboard.MakeCode,

 (input->data.keyboard.Flags & RI_KEY_BREAK)

 ? TEXT("release") : TEXT("press"));

 ListBox_AddString(g_hwndChild, buffer);

 }

 DefRawInputProc(&input, 1, sizeof(RAWINPUTHEADER));

 free(input);

}

...

 HANDLE_MSG(hwnd, WM_INPUT, OnInput);

When we get the WM_INPUT message, we use the GetRawInputData function to convert

the raw input handle to a raw input structure. This involves the standard two-step of first

finding out how much memory you need, then allocating that memory and trying again.

Do note that if you are going to use a preallocated buffer (for example, to handle the common

case where the raw input fits in less than 80 bytes), your buffer still must be properly aligned

for a RAWINPUT structure. This is one of the basic ground rules, but it’s worth calling out

4/4

explicitly because you are going to be tempted to preallocate the buffer. We didn’t have to

worry about it here because the malloc function guarantees that the allocated buffer is

suitably aligned.

Next, we confirm that the input is keyboard input. This is theoretically not necessary because

the only input we registered for is keyboard input, but I feel better checking for it, because

somebody might do a RegisterRawInputDevices and register some other type of input,

and I don’t want to get faked out.

After verifying that we do indeed have keyboard input, we extract the payload:

The device handle tells us which keyboard generated the input.

The Message is the window message that was generated.

The VKey is the virtual key code.

The MakeCode is the scan code.

The Flags provide other information:

Which prefixes are present on the scan code.

Whether this is a make (press) or break (release).

Finally, we call DefRawInputProc to allow default processing to occur. This lets the

keypress enter the normal input system.

Note that although there’s a GetRawInputDeviceList function which lets you find all the

keyboard devices, that is not useful in practice because modern computers have a ton of

special-purpose keyboards hiding inside them. For example, the volume control knobs on

your laptop might actually be a tiny two-button keyboard.

Raymond Chen

Follow

http://www.win.tue.nl/~aeb/linux/kbd/scancodes-1.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

