
1/3

June 24, 2016

Why is my message queue full of WM_TIMER messages?
devblogs.microsoft.com/oldnewthing/20160624-00

Raymond Chen

Dmitry wondered how it’s possible for a lot of auto-generated messages to pile up in the

message queue. I remarked, “That’s a good question, and I didn’t provide all the information

necessary to answer it. Answering it will take more than two sentences, so I will toss it onto

the topic queue.”

One of my colleagues wrote to me and said, “Hey, could you bump up the priority of that

topic? I happen to have a bug where COM calls are failing because the message queue is full. I

wrote some diagnostic code to drain the message queue to see what was in it, and it was full

of unprocessed WM_TIMER messages. There were 53 timers running at 16ms each, and the

UI thread stopped processing messages for 9 seconds.”

Back when I explained how asynchronous input worked, I didn’t talk about where auto-

generated messages came from.

If a request for a message is about to say, “Nope, no matching messages,” the window

manager makes one last check: “Is there an auto-generated message that could satisfy this

request?” If so, then it generates the message, and hey look, there’s a message!

The catch is that auto-generated messages are grouped together. For example, if you ask for

any kind of mouse message, and there is an auto-generated WM_MOUSEMOVE available, then

the window manager will generate a WM_MOUSEMOVE and then check if that matches the filter

you provided. The auto-generation is done this way so that message ordering is preserved

within a group. You wouldn’t want a mouse-up to be generated before the corresponding

mouse-down.

The message groups can be see in functions like GetQueueStatus and the PM_QS_* flags

to PeekMessage .

Okay, now we’re getting closer to seeing how auto-generated messages can pile up: If you are

filtering for a message, and there is an auto-generated message from the same group, but

which doesn’t match your filter, then the window manager will auto-generate the message,

and then go back and re-run the “Find a message” code, which sees the auto-generated

message but says, “Nope, I’m not interested in that message.”

https://devblogs.microsoft.com/oldnewthing/20160624-00/?p=93745
http://blogs.msdn.com/b/oldnewthing/archive/2013/05/23/10420741.aspx#10420954
http://blogs.msdn.com/b/oldnewthing/archive/2013/06/05/10423678.aspx

2/3

Another piece of the puzzle is understanding the timer group. There are two messages in the

timer group. One is your friend and mine, WM_TIMER . The other is an undocumented

internal message known as WM_SYSTIMER . This is an alternate universe of timers used by

the system to manage system things, like the animated concentric circles in the Mouse Sonar

feature, deciding when to time out the system tooltips (like the one that appears when you

hover over the × button), driving autorepeat when you click on the scroll bar, and blinking

the caret in an edit control.

The final piece of the puzzle is the COM modal message loop. This is the message loop used

by COM when you call a method on an STA that needs to be marshaled. COM notifies the

destination thread that it needs to run some code, and then it enters a modal message loop

waiting for the destination thread to reply, “Okay, I’m done. Here’s the answer.”

The COM message loop is a complicated beast, most likely the result of over twenty years of

evolution rather than having been designed that way from the beginning. One of the things

that it does is peek WM_SYSTIMER messages. Another thing that it does is dispatch timer

messages, provided you passed the COWAIT_DISPATCH_WINDOW_MESSAGES flag.

Okay, here comes the wild ride.

COM wants to process WM_SYSTIMER messages, but not WM_TIMER messages. It therefore

does a PeekMessage(&msg, nullptr, WM_SYSTIMER, WM_SYSTIMER, PM_REMOVE) . If

there is a WM_SYSTIMER message due, then the window manager generates the WM_SYS‐

TIMER message on the fly, puts it in the queue, and the PeekMessage function returns it.

That’s the good case.

Another good case is that there is neither a WM_SYSTIMER message nor a WM_TIMER

message due. In that case, the window manager generates nothing, and the PeekMessage

function returns “Sorry, I didn’t find anything.”

The bad case is where there is no WM_SYSTIMER message due, but there is a WM_TIMER

message due. In that case, the window manager generates the WM_TIMER message on the fly

and puts it in the queue. But the PeekMessage function ignores that message because it’s

interested only in WM_SYSTIMER messages.

Result: A WM_TIMER message got generated and dumped into the queue.

Every time a WM_TIMER comes due, another WM_TIMER message gets generated and added

to the queue. Eventually, your queue fills up with WM_TIMER messages.

My colleague replied, “Thanks for the explanation. Of course, it’s COM, the Bermuda triangle

of Win32!”

Raymond Chen

https://msdn.microsoft.com/en-us/library/windows/desktop/ms645601(v=vs.85).aspx#_win32_Mouse_Sonar
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

