
1/4

June 23, 2016

Why does the x64 calling convention reserve four home
spaces for parameters even for functions that take fewer
than four parameters?

devblogs.microsoft.com/oldnewthing/20160623-00

Raymond Chen

In the comments to Can an x64 function repurpose parameter home space as general scratch

space?, many people questioned why the full four home spaces are allocated for all functions,

even those that have fewer that four parameters.

MSDN gives a very brief answer: “This aids in the simplicity of supporting C unprototyped

functions, and vararg C/C++ functions.”

Let’s dig into that sentence.

Classic C allows you to call an unprototyped function. You can just say “There’s a function

called f , and it returns an integer, but that’s all I’m going to tell you. You’ll just have to trust

me on the rest.”

int f();

You can call this function and pass however many parameters you like. As long as you pass

enough parameters to satisfy the function, that’s good enough. (Modern C has tightened the

rules, but classic C didn’t care.) The catch is that the number of parameters you pass could be

fewer than the number of parameters the function actually accepts.

Huh?

The classic example of this is the open function. It takes three parameters, but the third

parameter is required only when creating a file. If you aren’t creating a file, then the third

parameter can be omitted.

fd = open(filename, O_RDONLY);

fd = open(filename, O_CREAT | O_WRONLY, 0777);

Now think about how this function would be implemented. On entry, the rcx register

points to the file name, the rdx register contains the flags, and the r8 register might or

might not contain the creation mode.

https://devblogs.microsoft.com/oldnewthing/20160623-00/?p=93735
http://blogs.msdn.com/b/oldnewthing/archive/2013/08/30/10445305.aspx
https://msdn.microsoft.com/en-us/library/ms235286.aspx

2/4

So how do you know whether you should spill r8 ? If you spill it when you shouldn’t have,

then you corrupted the stack.

Okay, so you can work around this by spilling to the local frame instead of onto the home

space, but since the compiler doesn’t know whether this function is ever going to be called

with fewer parameters than prototyped, it means that the compiler effectively can never use

the home space in the first place, because, who knows, maybe the function goes like this:

int open(char *filename, int flags, int mode)

{

 if (is_auto_fail_mode()) return -1;

 ... rest of the code ...

}

and the caller cleverly arranged that is_auto_fail_mode() will return 1 , and then called

open() and intentionally passed no parameters at all. Under classic C, this is perfectly

legal.

If you say that the caller needs to allocate home space only for the actual parameters, then

the result is that the compiler can never rely on the existence of home space. Which kind of

renders home space useless.

Variadic functions are in a similar boat. If home space was guaranteed only for actual

parameters, then variadic functions would not know whether any of the inbound register

parameters are spillable. They would have to spill them into the local frame, but that makes

walking the variable parameter list more cumbersome because the parameters are no longer

contiguous in memory. You have the four locally-spilled parameters, followed by the function

exception state, the frame pointer, the return address, and then parameters beyond the

fourth.

I guess you could hack around this by changing the prologue of variadic functions to go

something like this:

 sub rsp, N+32 ;

 mov rax, [rsp+N+32] ; recover return address

 mov [rsp+N+32], r9 ; spill parameter 4 (if it exists)

 mov [rsp+N+24], r8 ; spill parameter 3 (if it exists)

 mov [rsp+N+16], rdx ; spill parameter 2 (if it exists)

 mov [rsp+N+ 8], rcx ; spill parameter 1 (if it exists)

 mov [rsp+N], rax ; restore return address

 .. rest of standard prologue to build the frame and stuff ..

and the function epilogue would go

 add rsp, N

 ret 32

to clean up the four parameters that got rewritten on the stack.

3/4

This would fall into the “pay for play” category, where the ugliness is localized only to the

people who need the ugly thing. It would make stack walking harder, but stack walking is

relatively infrequent, so making stack-walking harder isn’t that big of a deal; as long as stack-

walking isn’t rendered impossible.

But wait, why is reserving the full four home spaces so distasteful in the first place? Maybe

it’s because people consider it wasteful to allocate memory that isn’t being used.

But is it really going unused?

No, it’s not going unused. The whole point of the original article was to say that the four

spaces for home parameters aren’t actually required to be used for home parameter spilling.

A function is welcome to treat it as hey look, free memory. and in practice, that’s what most

of them do. They will spill rbx and rsi into those spaces rather than spilling the actual

parameters. So the memory isn’t going to waste.

Requiring the full four home parameters to be preallocated also saves you the trouble of

having to keep realigning your stack on a 16-byte boundary for each function call. The value

32 is a multiple of 16, so whatever alignment you already performed is unaffected by

subtracting another 32. On the other hand, if you had callee clean and variable-sized home

space, you would have to push an extra dummy parameter for half of the functions, just so

that the stack stayed aligned.

 ; about to call a function that takes only 1 parameter.

 ; need to push a dummy parameter to keep the stack 16-byte aligned.

 push 0

 push rax

 call f

But you can solve that problem by saying that functions are always caller-clean. That way,

you just set up your register spill space once, and then you keep reusing it. It also has the nice

property that local variables remain at the same offset relative to the stack pointer for the

lifetime of the function.

Or maybe the objection is that it creates more work for the caller, having to allocate 32 extra

bytes of memory.

Except that in practice, it’s not any extra work at all. As we noted, the x64 calling convention

is caller-clean, which means that the space for parameters gets reused from function call to

function call. You merely allocate the space in your prologue and it’s good for the whole

function. And you already had to reserve space on the stack in the function prologue when

you did a sub esp, N ; you just need to bump it up to sub esp, N+32 . This is arithmetic

done at compile time, so there is no additional runtime cost. (It’s not like the CPU goes faster

if the subtrahend is smaller.)

4/4

The upshot of this is that trying to minimize parameter home space doesn’t really save you

anything. Memory isn’t being saved, because the called function was going to use the extra

space anyway. Execution time isn’t being saved, because the stack pointer adjustment is

already being done; you’re just changing the amount of the adjustment, which has no

incremental cost. You’re creating more work for the compiler, because it now needs to keep

track of the maximum number of parameters passed to any function called by this function.

(Mind you, that’s not a big cost anyway. Itanium relied on the compiler doing this work.) And

you’re creating more work for the function being called, because it has to be careful not to

spill any registers which might not correspond to actual parameters (information that is not

available at compile time).

So reserving home space for all four parameters (even if the caller passes fewer than four

actual parameters) makes some people slightly happier (variadic functions), a lot of people

significantly happier (classic C code), and adds zero additional cost. Free money.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2015/07/29/10631311.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

