
1/3

June 15, 2016

Raymond’s complete guide to HSTRING semantics
devblogs.microsoft.com/oldnewthing/20160615-00

Raymond Chen

The title of today’s article is a blatant ripoff of Eric Lippert’s complete guide to BSTR

semantics.

I’m going to start with a lie: An HSTRING is a reference-counted Unicode string.

Work with me here.

The string is immutable, and it uses the UTF-16LE encoding, as is traditional in Windows.

Here are the basic operations on HSTRING s:

WindowsCreateString creates an HSTRING from a UTF-16LE-encoded buffer and a

specified length. The buffer does not require a terminating null. If the buffer contains

embedded null characters, then the resulting HSTRING will have embedded null characters.

(In particular, if you pass a null-terminated string and you include the null terminator in the

length, then the resulting string has an embedded null character. Note also that the length is

in wchar_t code units, not in bytes.)

WindowsDuplicateString increments the reference count on an HSTRING , and returns a

new HSTRING which you should use to refer to the string.

WindowsDeleteString decrements the reference count on an HSTRING . If the reference

count drops to zero, then the string is destroyed. You shouldn’t use the HSTRING after

passing it to WindowsDeleteString.

There are a small number of string manipulation functions like WindowsSubstring and

WindowsConcatString which create new strings from old strings. The set of operations is

rather limited, however. If you want to perform fancy operations on HSTRING s, you’ll

probably need to do them yourself. (Of course, if you’re using a projected language, the

HSTRING will project as something closer to what your projected language operates on

natively, at which point you will most likely have a rich collection of library functions

available to do advanced manipulations.)

https://devblogs.microsoft.com/oldnewthing/20160615-00/?p=93675
https://blogs.msdn.microsoft.com/ericlippert/2003/09/12/erics-complete-guide-to-bstr-semantics/

2/3

To access the characters in the HSTRING , use the WindowsGetStringRawBuffer

function, which gives you two things: The return value is a pointer to the first character in the

HSTRING , and the optional output parameter is the number of code units. The buffer should

be treated as read-only because HSTRING s are immutable.

The string contents in the buffer are always followed by a null character (which doesn’t count

toward the string length); as a result, you can treat the string buffer as if it were a null-

terminated string and get away with it most of the time.

The time you don’t get away with it is if the string contains embedded null characters. In that

case, treating it as a null-terminated string will stop prematurely, mistaking the embedded

null for the terminal null. You can use the WindowsStringHasEmbeddedNull function

to detect whether an HSTRING contains an embedded null and reject the operation if you

don’t support embedded nulls.

One of the special rules for HSTRING is similar to the corresponding rule for BSTR , namely

that a null pointer is equivalent to a zero-length string. But HSTRING takes it further: Not

only is a null pointer equivalent to a zero-length string, but in fact a null pointer is the

representation of a zero-length string. In other words, if you call WindowsCreateString

and specify that the string has length zero, then out will come a null pointer. It is legal to

assume that a non-null HSTRING represents a non-empty string. Conversely, it is legal to

test an HSTRING against a null pointer to see whether the string is empty.

Okay, so now I cop to the lie: An HSTRING is not always a reference-counted string.

There are these things called fast-pass strings. Fast-pass strings are HSTRING s that involve

no memory allocation. If you have a buffer that you want to turn into an HSTRING , and you

promise not to modify the buffer for the lifetime of your HSTRING , then you can use the

WindowsCreateStringReference function to create an HSTRING around your buffer.

The resulting HSTRING is a legal HSTRING , but instead of allocating memory on the heap

for a reference-counted object, it uses the HSTRING_HEADER structure which you passed to

the WindowsCreateStringReference function to store the metadata, and it uses the

buffer you passed to the function to store the string contents.

It’s called a fast-pass string because this special string doesn’t require any memory allocation,

and no data copying occurs.

When you are finished with a fast-pass string, you just abandon the HSTRING . The

underlying memory for the fast-pass string was provided by you, so you are still on the hook

for freeing that memory as appropriate.

The existence of fast-pass strings explains why the WindowsDuplicateString function

returns you another HSTRING : If the original string is fast-pass, then the

WindowsDuplicateString function needs to convert it to a true reference-counted heap-

https://disneyland.disney.go.com/guest-services/fastpass/

3/3

allocated object, and then it returns an HSTRING to that heap-allocated string. (On the other

hand, if the HSTRING is already a heap-allocated string with a reference count, then the

WindowsDuplicateString function merely increments the reference count and returns

the same HSTRING back.)¹

The rules for managing HSTRING s therefore go like this:

If you receive an HSTRING as a function parameter, you are welcome to use it as-is

until your function returns, but don’t call WindowsDeleteString on that string,

because you are not the owner of the string. It was merely lent to you. (This is the same

rule that applies to COM reference counts.)²

If you need to keep using the HSTRING after the function returns (say, because you’re

saving it in a member variable), you must use WindowsDuplicateString and use the

duplicate.

Each call to WindowsCreateString or WindowsDuplicateString (or one of the

helper functions that creates a string) should be matched to exactly one call to

WindowsDeleteString which is passed the same handle that

WindowsCreateString or WindowsDuplicateString returned.

You can think of fast-pass strings as lazy-heap-allocated strings: They get copied to the heap

only if somebody needs to extend the lifetime of the string beyond the lifetime of the

function.

The WRL library has wrapper classes for HSTRING s: The HString class manages an

HSTRING , and the HStringReference manages a fast-pass HSTRING .

¹ In theory, a debugging version of the WindowsDuplicateString function could create a

full duplicate of the string anyway. That way, when you have an HSTRING leak, you can use

heap leak tools to find the code that duplicated the string and failed to destroy it. I don’t

know if this theory actually occurs in practice.

² COM violates its own rule with the CoGetInterfaceAndReleaseStream function, and

that lapse came back to bite us.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20151023-00/?p=91291
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

