
1/4

June 9, 2016

Investigating an app compat problem: Part 2: Digging in
devblogs.microsoft.com/oldnewthing/20160609-00

Raymond Chen

We left our story with the conclusion that the program crashed because its TLS slot was null.

But how can we figure out who sets the TLS slot and why it failed to set the TLS slot?

Let’s hope that the reason is close to the failure (because debugging is an exercise in

optimism) and see if we can find the code that is supposed to set the TLS value and figure out

why it failed.

This is where we roll up our sleeves and get our hands dirty.

Here is the function that crashed. Let’s do some reverse-compilation. My personal

convention is as follows:

Register-sized variables are left untyped until I figure out what type it really is. If I must

specify a type for a variable declaration, I use int or void* . (If the type turns out

really to be an int , I use int32_t .)

Local variables are named localXX where XX is the offset of the variable relative to

the frame pointer.

Member variables are named m_XX where XX is the offset of the member relative to

the start of the object.

Functions are named f_XXXXXXXX where XXXXXXXX is the address of the first

instruction.

https://devblogs.microsoft.com/oldnewthing/20160609-00/?p=93635

2/4

contoso!ContosoInitialize+0x4d40:

314259a0 push ebp

314259a1 mov ebp, esp

314259a3 sub esp, 10h // 16 bytes of local variables

314259a6 mov dword ptr [ebp-10h], ecx // local10 = this

314259a9 mov eax, dword ptr [ebp+8] // arg1

314259ac mov dword ptr [ebp-8], eax // local8 = arg1

314259af lea ecx, [ebp-0Ch] // &localc

314259b2 push ecx

314259b3 lea edx, [ebp-4] // &local4

314259b6 push edx

314259b7 mov eax, dword ptr [ebp-8] // local8

314259ba push eax

314259bb call contoso!ContosoInitialize+0x4db0 (31425a10)

314259c0 add esp, 0Ch

314259c3 mov edx, 1

314259c8 mov ecx, dword ptr [ebp-0Ch] // localc

314259cb shl edx, cl // 1 << localc

314259cd mov eax, dword ptr [ebp-4] // local4

314259d0 mov ecx, dword ptr [ebp-10h] // this

314259d3 mov eax, dword ptr [ecx+eax*4] // this->m_0[local4]

314259d6 and eax, edx // this->m_0[local4] & (1 << localc)
314259d8 test eax, eax

314259da je contoso!ContosoInitialize+0x4d83 (314259e3) // jump if bit was clear

314259dc mov eax, 1 // return 1

314259e1 jmp contoso!ContosoInitialize+0x4da3 (31425a03)

314259e3 mov edx, 1

314259e8 mov ecx, dword ptr [ebp-0Ch] // localc

314259eb shl edx, cl // 1 << localc

314259ed mov eax, dword ptr [ebp-4] // local4

314259f0 mov ecx, dword ptr [ebp-10h] // this

314259f3 mov eax, dword ptr [ecx+eax*4] // this->m_0[local4]

314259f6 or eax, edx // this->m_0[local4] | (1 << localc)
314259f8 mov ecx, dword ptr [ebp-4] // local4

314259fb mov edx, dword ptr [ebp-10h] // this

314259fe mov dword ptr [edx+ecx*4], eax // this->m_0[local4] = this->m_0[local4]
| (1 << localc)

31425a01 xor eax, eax // return 0

31425a03 mov esp, ebp

31425a05 pop ebp

31425a06 ret 4

0:000>

The lack of common subexpression elimination and the frequent
spilling and reloading of

registers tells me that this code was compiled
with optimizations disabled.
Bad for

performance, but it makes reverse-engineering so much easier.
We end up with this, after

renaming some variables and propagating stores.

3/4

BOOL Class1::f_314259a0(int arg1)

{

 int elementIndex;

 int relativeBitIndex;

 f_31425a10(arg1, &elementIndex, &relativeBitIndex);

 if (this->m_0[elementIndex] & (1 << relativeBitIndex))

 {

 return TRUE;

 }

 else

 {

 this->m_0[elementIndex] =

 this->m_0[elementIndex] | (1 << relativeBitIndex);

 return FALSE;

 }

}

This function calculates a bit in a buffer, and if the bit is not set, it sets the bit. The function

then returns the previous state of the bit. Let’s look at the function that calculates which bit

to set.

contoso!ContosoInitialize+0x4db0:

31425a10 push ebp

31425a11 mov ebp,esp

31425a13 mov eax,dword ptr [ebp+8] // arg1

31425a16 shr eax,5 // arg1 / 32 (unsigned)

31425a19 mov ecx,dword ptr [ebp+0Ch] // arg3

31425a1c mov dword ptr [ecx],eax // *arg3 = arg1 / 32

31425a1e mov eax,dword ptr [ebp+8] // arg1

31425a21 xor edx,edx // zero-extend to 64 bits

31425a23 mov ecx,20h

31425a28 div eax,ecx // arg1 / 32

31425a2a mov eax,dword ptr [ebp+10h] // arg2

31425a2d mov dword ptr [eax],edx // *arg2 = arg1 / 32

31425a2f pop ebp

31425a30 ret

Okay, so the bit index is nothing fancy. The buffer at m_0 is treated as a giant bit array, and

this function figures out which element holds that bit and where that bit is. We also learned

that the incoming and outgoing parameters are unsigned 32-bit integers because the

arithmetic operations are consistent with unsigned operations rather than signed. We don’t

know how big the bit array is, but at least we can give the function a nicer name.

We can capture what we’ve learned as follows:

4/4

class SomeBitArrayClass1

{

public:

 BOOL SetBit(uint32_t bitIndex);

private:

 static void CalcBitPosition(

 uint32_t bitIndex,

 uint32_t* elementIndex,

 uint32_t* relativeBitIndex);

 uint32_t buffer[unknown_size];

};

BOOL SomeBitArrayClass1::SetBit(uint32_t bitIndex)

{

 uint32_t elementIndex;

 uint32_t relativeBitIndex;

 CalcBitPosition(bitIndex, &elementIndex, &relativeBitIndex);

 if (this->buffer[elementIndex] & (1 << relativeBitIndex))

 {

 return TRUE;

 }

 else

 {

 this->buffer[elementIndex] =

 this->buffer[elementIndex] | (1 << relativeBitIndex);

 return FALSE;

 }

}

Sure, the code that sets the bit could have been written as

this->buffer[elementIndex] |= (1 << relativeBitIndex);

but I’m just repeating the code that was written, and what they wrote calculates the indexed

element address twice.

We’re off to a good start, but we haven’t really learned much yet. Much more interesting is

the function that produced the null pointer that caused us to crash.

We’ll pick that up next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

