
1/3

June 6, 2016

If I create multiple selectors each of size 4GB, do I get a
combined address space larger than 4GB?

devblogs.microsoft.com/oldnewthing/20160606-00

Raymond Chen

Every so often, someone comes up with the clever idea of extending the address space of the

x86 processor beyond 4GB by creating multiple selectors, each of size 4GB. For example, if

you created a 4GB selector for code, another 4GB selector for stack, and another 4GB selector

for data, and assigned them distinct memory ranges, then you could load up each selector

into the corresponding register (CS, SS, DS) and be able to access 12GB of memory.

Profit!

Well, except that it doesn’t actually work.

Segment descriptors on the x86 contain the following pieces of information:

Various control bits not relevant to this discussion.

A segment base address (32 bits).

A segment limit (32 bits, encoded as a 20-bit value and an optional scale; details not

important).

In practice, what happens is that the base address is set to zero and the limit is set to

0xFFFFFFFF , which gives each segment a range of 4GB.

Segments create views into the linear address space. When you access memory by doing, say,

mov al, ds:[ebx] , what happens is the following:

The selector in the ds register is consulted to obtain its base address and limit. If ds

references an invalid selector, then a fault occurs.

The value in ebx is checked against the segment limit of the selector held in ds . If it

is greater than the limit, then a fault occurs.

The value in ebx is added to the selector’s base address, producing a linear adddress.

That linear address is used to access the underlying memory.

https://devblogs.microsoft.com/oldnewthing/20160606-00/?p=93575
https://blogs.msdn.microsoft.com/oldnewthing/20130628-00/?p=3963#comment-1063873
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933

2/3

The mechanism by which linear addresses map to physical addresses is not relevant to the

discussion. (This is where page tables come in.) I’m also ignoring expand-down selectors and

other details not related to addressing.

In other words, selectors don’t reference memory direcrly. They are merely a window into the

linear address space. If you create a selector whose base address is inside the [base address,

base address + offset] range of another selector, then both selectors are accessing the same

underlying memory.

Linear address space

Selector X

Selector Y

In the above example, we created Selector X with a base address of 0x50000000 and a limit

of 0x1FFFFFFF . This gives selector X a reach of [0x50000000 , 0x6FFFFFFF]: An access

to X:0 refers to linear address 0x50000000 , and an access to X:1FFFFFFF refers to linear

address 0x6FFFFFFF . Higher offsets from selector X are invalid.

We also created Selector Y with a base address of 0x60000000 and a limit of 0x7FFFFFFF ,

giving selector Y a reach of [0x60000000 , 0xDFFFFFFF].

Observe that the two selectors overlap. The addresses X:10000000 and Y:00000000 refer

to the same underlying linear address space. Write a value to to X:10000000 and you can

read it back from Y:00000000 .

Indeed, this behavior on overlap is relied upon constantly. To use the x86 in flat mode, you

create a code selector and a data selector, both of which have a base of 0x00000000 . and a

limit of 0xFFFFFFFF . You put the code selector in the cs register and the data selector in

the ss , ds , and es registers. The fact that the ranges perfectly overlap means that

reading data from a code address reads the same bytes that the CPU would have executed.

Conversely, the fact that they overlap means that you can generate code by writing to the data

segment.

Okay, you sigh, I can’t give each selector its own 4GB of address space. The fact that the base

address of the selector is a 32-bit value means that the best I can do is to create a selector

whose base is 0xFFFFFFF0 and whose limit is 0xFFFFFFFF ; that at least gives me linear

addresses as high as 0xFFFFFFF0 + 0xFFFFFFFF , or a smidge under 8GB. Still, 8GB is

better than 4GB, right?

Well, you don’t even get 8GB.

3.3.5 32-Bit and 16-Bit Address and Operand Sizes

With 32-bit address and operand sizes, the maximum linear address or segment offset is
FFFFFFFFH (2³² − 1).

3/3

“The maximum linear address is FFFFFFFFH.”

This means that segments whose base + limit is greater than 0xFFFFFFFF are illegal. All of

your selectors have to fit inside [0x00000000 , 0xFFFFFFFF].

Now, maybe you could pull some super sneaky tricks like keeping all pages mapped not

present, and then when a page fault occurs, determining which selector was the source of the

faulting linear address and mapping in the appropriate page at fault time, and then setting

the trap flag so that the kernel regains control after the instruction has executed, so that you

can unmap the page immediately. But faulting at every instruction is going to make things

ridiculously slow, and besides, it won’t help you if somebody performs a block memory copy

between two different “pseudo address spaces” that happen to have the same linear address.

I guess at that point, you would change the selector base addresses so that the source and

destination no longer land on the same page, but at this point you are doing so much work at

every instruction that you may as well give up trying to execute code natively and just write a

p-code interpreter.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

