
1/2

May 27, 2016

Diagnosing a crash in unloaded_something.dll
devblogs.microsoft.com/oldnewthing/20160527-00

Raymond Chen

A failure report came in to the shell team because Explorer crashed at shutdown in what the

debugger reported as unloaded_themeui.dll . Time to dig in.

ntdll!RtlpCallVectoredHandlers+0xeb

ntdll!RtlDispatchException+0x81

ntdll!KiUserExceptionDispatch+0x50

<Unloaded_themeui.dll>+0x2bbfbd

0x1fbdebe0

0x1fbdebc0

0x2357ef80

<Unloaded_themeui.dll>+0x2bbfbd:

00007ff8`e384bfbd ?? ???

Yup, there’s nothing loaded there all right. But let’s see what was loaded there before.

0:001> lm

...

Unloaded modules:

...

00007ff8`e3590000 00007ff8`e385d000 themeui.dll

00007ff8`e3840000 00007ff8`e385d000 abcdefg.dll

So there were two DLLs that used to be loaded at the address that crashed. Which could it

be?

0:001> !reload /unl themeui.dll

0:001> u 00007ff8`e384bfbd

themeui!ext-ms-win-com-ole32-l1-1-1_NULL_THUNK_DATA_DLA <PERF> (themeui+0x2bffdd):

00007ff8`e384bfbd 40 ???

Well, that doesn’t look like code. How about abcdefg?

https://devblogs.microsoft.com/oldnewthing/20160527-00/?p=93526

2/2

0:001> !reload /unl abcdefg.dll

0:001> u 00007ff8`e384bfbd-80

...

abcdefg!AbcdefgImageList::GetClassImageList+0x1f

00007ff8`e384bfb7 ff1593a20000 call [abcdefg!_imp_SetupDiGetClassImageList]

00007ff8`e384bfbd 85c0 test eax,eax

That looks a lot more promising. What appears to have happened is that abcdefg.dll

called SetupDiGetClassImageList , and while the call was in progress, the DLL got

unloaded. When the call to SetupDiGetClassImageList finally returned, it returned to an

unloaded DLL, which is the source of the crash.

Reconstructing the stack revealed a chain of calls that made sense in the context of

abcdefg.dll , so this diagnosis is probably correct. (I’ve anonymized the name of the other

DLL to protect the guilty.)

What happened is that during Explorer startup, abcdefg.dll registered a wait with the

thread pool on an event, and at shutdown it unregisters the wait. But it unregisters with the

UnregisterWait function. If a callback is running at the time the wait is unregistered, the

function returns ERROR_IO_PENDING , but nobody checks. The shutdown code proceeds to

unload abcdefg.dll , and then we are left executing code that was freed.

The code in abcdefg.dll needs to handle the case where the callback is still running at the

time the wait is unregistered. You can use the UnregisterWaitEx function, which lets you

pass an event that is set when the callback completes, or pass INVALID_HANDLE_VALUE to

wait synchronously for the callback to complete before returning.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20130906-00/?p=3303
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686870(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686876(v=vs.85).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

