
1/4

May 26, 2016

Debugging session: Which of the many things happening
in this single line of code is the one that crashed?

devblogs.microsoft.com/oldnewthing/20160526-00

Raymond Chen

A crash report came in, and the offending line of code was the following:

void CDeloreanSettings::UpdateFluxModulation(bool sendNotification)

{

 ComPtr<IFluxModulator> spModulator;

 // Crash on the next line

 if (SUCCEEDED(m_spFluxCapacitor->GetFluxModulator(&spModulator)))

 {

 ...

 }

}

Someone made the initial diagnosis that

The call is to ReleaseAndGetAddressOf() on a ComPtr object which is declared right
above (which should be initialized to nullptr). Am I missing something?

Let’s look at the disassembly. First, with no annotations. See if you can figure it out yourself.

https://devblogs.microsoft.com/oldnewthing/20160526-00/?p=93525

2/4

CDeloreanSettings::UpdateFluxModulation:

mov qword ptr [rsp+10h],rbx

mov qword ptr [rsp+18h],rsi

mov qword ptr [rsp+20h],rdi

push rbp

push r14

push r15

mov rbp,rsp

sub rsp,50h

mov rax,qword ptr [__security_cookie]

xor rax,rsp

mov qword ptr [rbp-8],rax

mov rdi,qword ptr [rcx+18h]

mov r14,rcx

lea rcx,[rbp-10h]

xor esi,esi

mov r15b,dl

and qword ptr [rbp-10h],rsi

call Microsoft::WRL::ComPtr<IUnrelatedInterface>::InternalRelease

mov rax,qword ptr [rdi] << crash here

mov rbx,qword ptr [rax+38h]

mov rcx,rbx

call qword ptr [__guard_check_icall_fptr]

lea rdx,[rbp-10h]

mov rcx,rdi

call rbx

Okay, here’s the version with my annotations:

3/4

CDeloreanSettings::UpdateFluxModulation:

; Prologue: Save nonvolatile registers and build the stack frame.

mov qword ptr [rsp+10h],rbx

mov qword ptr [rsp+18h],rsi

mov qword ptr [rsp+20h],rdi

push rbp

push r14

push r15

mov rbp,rsp

sub rsp,50h

mov rax,qword ptr [__security_cookie]

xor rax,rsp

mov qword ptr [rbp-8],rax

mov rdi,qword ptr [rcx+18h] ; rdi = m_spFluxCapacitor

mov r14,rcx ; save "this"

lea rcx,[rbp-10h] ; prepare spModulator.ReleaseAndGetAddressOf

xor esi,esi

mov r15b,dl ; save "sendNotification"

and qword ptr [rbp-10h],rsi ; construct spModulator

; ReleaseAndGetAddressOf was inlined. Here's the Release part:

call Microsoft::WRL::ComPtr<IUnrelatedInterface>::InternalRelease

; prepare m_spFluxCapacitor->...

; Crash here loading vtable from m_spFluxCapacitor

mov rax,qword ptr [rdi] << crash here

mov rbx,qword ptr [rax+38h] ; load address of GetFluxModulator

mov rcx,rbx ; parameter to CFG check

call qword ptr [__guard_check_icall_fptr] ; check the function pointer

; Here's the GetAddressOf part of ReleaseAndGetAddressOf:

lea rdx,[rbp-10h] ; spModulator.GetAddressOf

mov rcx,rdi ; "this" for GetFluxModulator

call rbx ; _spFluxCapacitor->GetFluxModulator()

The compiler inlined ReleaseAndGetAddressOf , and it interleaved various unrelated

operations. In the second block of code, you can see it interleave the construction of the

ComPtr with the call to InternalRelease . In the third block, you can see it peform the

control flow guard test before performing the GetAddresssOf .

The conclusion, therefore, is not that the crash occurred in the ReleaseAndGetAddressOf

The ReleaseAndGetAddressOf just finished releasing and is waiting for its turn to do the

GetAddresssOf . Rather, the crash occurred because m_spFluxCapacitor is null, and we

crashes trying to read the vtable from a null pointer.

Further investigation of the issue revealed that UpdateFluxModulation is called from an

event handler that was registered to be called whenever the modulation changed. Inspection

of memory showed that the event registration token was zero, indicating that the event has

already been unregistered. The issue is that there was a modulation change in flight when the

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx

4/4

event handler was unregistered, so the CDeloreanSettings received its change notification

after it had unregistered. The fix is to have the handler check whether it still has a

m_spFluxCapacitor , and if not, then ignore the notification, on the assumption that it was

a stray notification that was late to arrive.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

