
1/3

May 18, 2016

Why doesn’t RevertToSelf undo the most recent
SetThreadToken?

devblogs.microsoft.com/oldnewthing/20160518-00

Raymond Chen

A customer was experiencing unexpected behavior in their Windows service process with

respect to impersonation. The customer’s question had two parts. Let’s take them one at a

time.

Our service receives a request from a client and impersonates the client in order to satisfy the
request.

As part of satisfying the request, the service needs to impersonate a specific unrelated identity
in order to get some information. That nested impersonation is done with SetThreadToken .

When the nested impersonation is complete, we call RevertToSelf . But this does not
restore the impersonation to the original client; instead, the thread loses all impersonation and
becomes “Network Service”, which is the token of the service process.

Is this how the RevertToSelf function is supposed to work? MSDN doesn’t explicitly
mention this.

Here’s what MSDN says about RevertToSelf:

RevertToSelf function

The RevertToSelf function terminates the impersonation of a client application.

It states right there that RevertToSelf ends impersonation. When it returns,

impersonation has terminated. It is an ex-impersonation.

I guess that’s why the function is called RevertToSelf and not RevertToPreviousToken‐

PriorToMostRecentCallToSetThreadToken .

The thread token is a single value. It’s not a stack of values; SetThreadToken does not push

a new value onto the top of the stack, and RevertToSelf does not pop the top value off the

stack and reveal the previous value. For one thing, that model would make it hard to manage

https://devblogs.microsoft.com/oldnewthing/20160518-00/?p=93485
https://msdn.microsoft.com/library/windows/desktop/aa379317(v=vs.85).aspx

2/3

impersonation if you wanted to change impersonation in a non-stack-like manner. Second,

maintaining a stack of tokens would create problems if somebody destroyed a token while it

was still in the token stack.

Nope, a thread token is just one token. When you call SetThreadToken , it replaces the

token. When you call RevertToSelf , the token is cleared and the thread no longer has a

token. Maybe RevertToSelf should have been named ClearThreadToken , since that

would emphasize that the function erases any existing thread token, leaving the thread to

inherit the identity of its host process.

If you want to change impersonation to some other identity, then call SetThreadToken

with the token whose identity you want to impersonate.

Okay, that’s part one. The customer’s original question anticipated this answer and had a

follow-up question.

Presumably, if this is the expected behavior of the RevertToSelf function, then what the
code needs to do in order to perform the nested impersonation is

1. Call GetThreadToken to get the current impersonation token.
2. Call SetThreadToken to set the nested impersonation token.
3. Do the necessary work.
4. To end nested impersonation, call SetThreadToken with the token obtained in step 1

to restore the thread token to the original impersonation token.

Is that correct?

Close.

It’s possible that step 1 will fail with ERROR_NO_TOKEN . That happens if the thread is not

impersonating at all, which means that your code is operating from a flawed assumption. In

that case, you have no nested impersonation; you just have impersonation. Step 4 needs to be

adjusted as follows:

4. If step 1 failed with ERROR_NO_TOKEN , then call RevertToSelf to end

impersonation. If step 1 succeeded, then the thread was previously impersonating, in

which case call SetThreadToken with the token obtained in step 1 to restore the

thread token to the original impersonation token.

5. Close the thread token obtained in step 1, if any.

The customer replied, “Thanks. It appears that we misunderstood the statement in MSDN.”

Raymond Chen

Follow

https://www.flickr.com/photos/42873250@N00/3455003346/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

