
1/2

April 13, 2016

If relocated DLLs cannot share pages, then doesn’t ASLR
cause all pages to be non-shared?

devblogs.microsoft.com/oldnewthing/20160413-00

Raymond Chen

Commenter Medinoc wonders whether it’s still the case that relocated DLLs can’t be shared

in memory. If so, then doesn’t ASLR cause all pages to become non-sharable?

There are multiple things in play here. We’ll take them up in historical order, but I’ll start

with Windows NT 3.1 instead of Windows 95 because I already discussed Windows 95 a

while back.

Windows NT 3.1 tried to load DLLs at their preferred address. If that happened, then the

pages were demand-paged from the executable on disk, and if multiple processes loaded the

DLL at the preferred address, then the memory was physically shared.¹ On the other hand, if

the DLL could not load at its preferred address, then fixups were applied to the entire DLL to

relocate it, and the relocated DLL was dumped into the pagefile, and not only did further

demand paging come from there, but that relocated copy was not shared between processes.

In other words, if two processes both loaded a DLL, and the DLL got relocated in both of the

processes, and it got relocated to the same address in each process, there would nonetheless

be two copies of the DLL in the page file, not one copy that was shared between the two

processes.

The reason for not sharing the pages in this case is that the likelihood of all the stars aligning

is relatively low. Under the Windows NT 3.1 model, each process did its own relocating, and

each process chose where the DLL would get relocated to. The likelihood that two processes

would both load the same DLL, and have the same virtual memory layout so that they would

choose the same relocation destination were relatively low, so the benefit of getting the

processes to coordinate among themselves was not worth the effort.

And then ASLR showed up and changed the cost/benefit calculations. With ASLR, DLLs are

being relocated constantly, and if the old rules were followed, there would be as many copies

of a DLL in the page file as there were processes that used the DLL. This was clearly not a

good thing.

https://devblogs.microsoft.com/oldnewthing/20160413-00/?p=93301
http://blogs.msdn.com/b/oldnewthing/archive/2015/05/18/10615339.aspx#10615694
http://blogs.msdn.com/b/oldnewthing/archive/2004/12/17/323556.aspx


2/2

The solution is that when a DLL is loaded, ASLR chooses a random destination address, but

it then remembers that address for future use, and if another process loads the DLL, the

kernel will try to use the same destination address for the DLL in that other process. This

means that if two processes load a DLL, that DLL will probably get the same destination

address in both processes, which establishes one of the prerequisites for sharing.

ASLR goes further. The kernel doesn’t even bother fixing up the entire DLL and dumping it

into the page file. Instead, it fixes up the DLL on the fly as it is loaded (stealing a trick from

Windows 95), and shares the fixed-up pages.

Another way of looking at this is that the kernel is pretending that the preferred address of

the file on disk happens to have matched the ASLR-chosen address all along. It carries out

this ruse by patching the bytes of the file as they are read off the disk.

¹ For simplicity of exposition, let’s assume that nobody changes page protection. If you are

smart enough to ask, “What if somebody changes the page protection?” then you are smart

enough to know the answer.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

