
1/3

April 12, 2016

Inherited access control entries are captured when the
child object is created

devblogs.microsoft.com/oldnewthing/20160412-00

Raymond Chen

In the discussion of how to change permissions as fast as Explorer does it, it appears that it

was not clear to people how inherited access control entries work, so there were a lot of

suggestions based on faulty mental models. So let me explain.

Inherited permissions on an object are established when the object is created. Once the

object has been created, you can change the permissions of the parent and it won’t have any

effect unless you explicitly ask for the inheritable properties to be re-propagated to child

objects. (You may recall that the CREATOR_OWNER SID works in a similar way.)

Let’s say this again. Each file has a security descriptor. To determine whether you can access

a file, the only thing that is consulted is the security descriptor on the file being accessed. The

security descriptors on the parent folders do not enter the picture, except possibly to

determine whether traversal is allowed.¹

Now, let’s talk about these alternate theories from the comments.

“I suspect the false [second parameter to ObjectSecurity.SetAccessRuleProtection] is

the problem.”

The security descriptor on a file can be marked as “protected”. This means “If somebody

changes the security attributes on a parent folder and tries to propagate inheritable attributes

to children, do not apply the inheritable attributes to me.” You can think of it as an “renounce

inheritance” bit on a security descriptor. If you set the bit, then you’re saying, “I know my

grandmother left me a collection of antique creamers shaped like animals, but I don’t want

them.”

The ObjectSecurity.SetAccessRuleProtection method lets you set or clear the

“renounce inheritance” bit, and if you choose to renounce the inheritance, you can set the

second parameter to false to say that you want to renounce the access control entries that

you already inherited. (Say, because they remind you of grandma’s unpleasant smell.)

https://devblogs.microsoft.com/oldnewthing/20160412-00/?p=93291
http://blogs.msdn.com/b/oldnewthing/archive/2015/10/07/10646148.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/08/24/717181.aspx
http://blogs.msdn.com/larryosterman/archive/2004/09/01/224051.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2015/10/07/10646148.aspx#10646331
http://www.bing.com/images/search?q=animal+shaped+porcelain+creamers
https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.objectsecurity.setaccessruleprotection%28v=vs.110%29.aspx

2/3

While that last parameter is interesting, it has nothing to do with the problem at hand, since

that bit controls the security attributes of a single file and does not perform any propagation.

“Does it take Explorer two minutes to change parent directory permissions when the ACL

specifies that the changes are supposed to be inherited from the parent directory? That would

surprise me. (Does inheritance work by altering every descendant rather than the permission

check testing ancestors?)”

When you change the security attributes of a parent folder, you are typically asked whether

you want to propagate inheritable attributes to children. If you say Yes, then the security

attributes of the children are overwritten with values that are consistent with the security

attributes of the parent. It is this step (rewriting security descriptors of all children) that

takes a long time.

(The Advanced Security Settings dialog assumes you always say Yes, becaus it goes hunting

up the parent tree looking for the source of your inheritable ACEs, and it it doesn’t find one,

it just shrugs.)

Walking up the directory tree is a tricky proposition in practice for a variety of reasons. First

of all, the existence of hard links means that a file can have multiple parent directories. Do

you have to walk up all of them? Or only the one that was used to open the file? (In which

case, it means that the effective security attributes of a file can vary depending on which path

you use to open it.) And what if you open the file by using its GUID instead of a file name or

path? What is the “parent directory”?

Windows takes the position that the security descriptor is an attribute of the object itself, not

its containers. The container can influence the default security descriptor at the time a child

object is created, but once that’s done, the child object can exercise its own free will and make

its own choices.

Bonus chatter: In practice, you may have a lot of files, but you almost never have a lot of

unique security descriptors. For example, all the files in a directory typically have the same

security descriptor, and a directory typically has the same security descriptor as its parent.

Therefore, NTFS keeps all the security descriptors in a single table, and all the files with the

same security descriptor share an entry in the table.

¹ Security checks on traversal are normally disabled, so by default, you can access anything

whose security descriptor grants you access, as long as you know its path. You can take

advantage of this: Create a directory, let’s call it Parent , that denies List Folder Contents to

everyone. Inside this directory, create subdirectories that grant access only to certain people,

and give the names of those subdirectories to those people. For example, you might grant

Bob read access to the Manhattan subdirectory. Bob can cd into Parent\Manhattan to

see what’s in it, but if Bob tries to cd into Parent and do a dir , he sees nothing.

http://blogs.msdn.com/b/oldnewthing/archive/2015/10/07/10646148.aspx#10646341
http://blogs.msdn.com/b/oldnewthing/archive/2015/05/05/10612220.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/02/28/10134679.aspx

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

