
1/2

April 7, 2016

Why can’t the debugger call GetFinalPathNameByHandle
via .call?

devblogs.microsoft.com/oldnewthing/20160407-00

Raymond Chen

There were a number of follow-up questions to my demonstration of calling the GetFinal‐

PathNameByHandleW function from the debugger.

Mason Wheeler asks, “What debugger is this? Why doesn’t it have the ability to call functions

as a standard feature?”

The debugger here is the debugger that comes with the Debugging Tools for Windows. It is

the core debugging engine that powers kd , cdb , ntsd , and windbg .

This debugging engine operates under very narrow constraints because it is designed to be

deployed to a customer machine with minimum overhead or invasiveness. (Indeed, this

debugger used to come preinstalled with Windows, but that stopped a while back,

presumably to minimize attack surface, and also to give the debugging tools team control

over their own release cycle.)

This means that the debugger cannot assume that there is a copy of the Windows SDK

installed on the machine. Without the header files, the debugger doesn’t know how to call

any particular function. What’s the calling convention? What is the type of each parameter?

(Four-byte integers, 8-byte integers, 4-byte floating point values, 8-byte floating point values,

and 128-bit SIMD values are all passed differently.) What is the function’s return value? (If

the return value is a structure or class, then an extra hidden parameter must be passed. And

the debugger needs to know the return value in order to print the result.)

Since the debugger does not have access to a compiler or to header files, it has to make do

with the symbolic information embedded in the symbol files. And that’s where the “If this

were a function you had written” comes from. If you had written the function, then the

information about the calling convention and parameters would be found in the symbol file

for the module containing the function you’re trying to call. But if you didn’t write the

function, then you don’t necessarily have full symbolic information for the function. In

particular, the Windows symbol server does not provide full symbolic information for system

https://devblogs.microsoft.com/oldnewthing/20160407-00/?p=93273
http://blogs.msdn.com/b/oldnewthing/archive/2015/10/16/10648184.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2015/10/16/10648184.aspx#10648336
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2015/10/16/10648184.aspx#10648362
http://blogs.msdn.com/b/oldnewthing/archive/2015/10/16/10648184.aspx#10648383


2/2

functions. It contains only enough information to build stack traces (which basically means it

has just the function name and some FPO information). That’s not enough information to

simulate a call to the function.

It’s great to have the Visual Studio debugger or some other fancy debugger available. But if

you are debugging a customer’s machine via a remote connection, you have to make do with

very little. Customers are understandably unhappy when you tell them, “Okay, we can try to

debug your problem, but first you need to install Visual Studio onto your domain controller.”

Plus there’s the heisenbug effect: The act of installing Visual Studio entails significant

changes to the system, one of which may alter the system enough to make the bug no longer

occur.

(That’s also why writing a scratch program that does an OpenProcess, DuplicateHandle,

GetFinalPathByHandle, and then MessageBox was not considered for this problem. If you

are debugging remotely, you have to be able to do everything you need from within the

debugger. There is nobody sitting at the console to whom you can email your test program,

ask to run it, and then have them read the results back to you.)

Raymond Chen

Follow







http://blogs.msdn.com/b/oldnewthing/archive/2015/10/16/10648184.aspx#10648383
http://blogs.msdn.com/b/oldnewthing/archive/2015/10/16/10648184.aspx#10648332
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

