
1/2

March 10, 2016

Could there be any problems with calling
GetModuleFileNameEx on your own process?

devblogs.microsoft.com/oldnewthing/20160310-00

Raymond Chen

In response to my discussion of why you can get an ERROR_INVALID_HANDLE from Get‐

ModuleFileNameEx even though the process handle is valid, Joshua asks, “Calling such

methods as these on your own process has no such caveats, right?”

Well, one of the issues is that the process you are querying from hasn’t yet completed its

initialization. That’s not an issue here, because the call is coming from within the process

itself. (If it weren’t initialized, then your code wouldn’t be running.)

Another issue is that “the process you are inspecting may be in the middle of updating its

module table, in which case the call may simply fail with a strange error like

ERROR_PARTIAL_COPY .” That issue doesn’t go away just because you’re making the call from

within the process. Another thread in the process might be in the middle of a LoadLibrary

call, and the module manager is adding a new entry to its table to track the new module. If

you try to inspect the module table while it is being updated, you might see a partially-loaded

module, you might see a linked list that is temporarily corrupt (because it is in the middle of

being rewritten), you might get a corrupt string (because the file name length was copied to

the entry, but the characters of the file name haven’t been copied yet), or you might get an

access violation (the pointer to the string hasn’t been initialized yet). Any of those things can

result in GetModuleFileNameEx failing, even when called on its own process.

Fortunately, there’s a solution: Don’t use GetModuleFileNameEx to get information about

your own process. Just use the regular GetModuleFileName function. This function queries

information for the current process, and since it always runs in-process, it can use critical

sections and other synchronization objects so that it can gain access to the shared

information, making sure that nobody is modifying the data structures while it is reading

them.

As noted in the original article, “These APIs don’t really work by the normally-accepted

definitions of ‘work’.” They are best-effort, and sometimes the best effort fails.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/20160310-00/?p=93141
http://blogs.msdn.com/b/oldnewthing/archive/2015/07/16/10624298.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2015/07/16/10624298.aspx#10628287
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

Follow

