
1/4

February 24, 2016

A static_cast is not always just a pointer adjustment
devblogs.microsoft.com/oldnewthing/20160224-00

Raymond Chen

Even without considering virtual base classes, a static_cast to move between a base class

and a derived class can be more than just a pointer adjustment.

Consider the following classes and functions.

class A

{

public:

int a;

void DoSomethingA();

};

class B

{

public:

int b;

void DoSomethingB();

};

class C : public A, public B

{

public:

int c;

void DoSomethingC();

};

B* GetB(C* c)

{

return static_cast<B*>(c);

}

void AcceptB(B* b);

void AcceptC(C* c)

{

AcceptB(c);

}

https://devblogs.microsoft.com/oldnewthing/20160224-00/?p=93081

2/4

Suppose the compiler decided to lay out the memory for C like this:

int a; } A } C

int b; } B

int c;

Now, you would think that converting a pointer to a C into a pointer to a B would be a

simple matter of adding sizeof(int) , since that’s what you need to do to get from the a

to the b .

Unless you happen to have started with a null pointer.

The rule for null pointers is that casting a null pointer to anything results in another null

pointer.

This means that if the parameter to GetB is a null pointer, the function cannot return

nullptr + sizeof(int) ; it has to return nullptr .

GetB:

 xor rax, rax

 test rcx, rcx

 jz @F

 lea rax, [rcx+sizeof(int)]

@@: ret

Similarly, if the parameter to AcceptC is nullptr , then it must call AcceptB with

nullptr .

AcceptC:

 test rcx, rcx

 jz @F

 add rcx, sizeof(int)

@@: jmp AcceptB

A naïve compiler would insert all these conditional jumps every time you cast between a base

class and a derived class that involves an adjustment. But this is also a case where a compiler

that takes advantage of undefined behavior can optimize the test away: If it sees that every

code path through the static_cast dereferences either the upcast or downcast pointer,

then that means that if the pointer being converted were nullptr , it would result in

undefined behavior. Therefore, the compiler can assume that the pointer is never nullptr

and remove the test.

http://blogs.msdn.com/b/oldnewthing/archive/2012/08/31/10345196.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2014/06/27/10537746.aspx

3/4

void AcceptC2(C* c)

{

c->DoSomethingB();

}

Here, the test can be elided because the result of the conversion is immediate dereferenced in

order to call the B::DoSomethingB method. The C++ language says that if you try to call an

instance method on a null pointer, the behavior is undefined. Doesn’t matter whether the

method actually accesses any member variables; just the fact that you invoked an instance

method is enough to guarantee that the pointer is not null. Therefore, the AcceptC2

function compiles to

AcceptC2:

 add rcx, sizeof(int)

 jmp B::DoSomethingB

The same logic applies on the receiving end of the method call: A method call can assume

that this is never null.

void C::DoSomethingC()

{

AcceptB(this);

}

C::DoSomethingC:

 add rcx, sizeof(int)

 jmp AcceptB

Since this is never null, the conversion from C* to B* can elide the test and perform the

adjustment unconditionally.

This means that you could add a dummy method to ever class:

class C : public A, public B

{

public:

void IsNotNull() { }

int c;

void DoSomethingC();

};

and call c->IsNotNull() to tell the compiler, “I guarantee on penalty of undefined

behavior that c is not null.”

4/4

void AcceptC3(C* c)

{

c->IsNotNull();

AcceptB(c);

}

AcceptC3:

 add rcx, sizeof(int)

 jmp AcceptB

I don’t know whether any compilers actually take advantage of this hint, but at least this is a

way of providing it in a standard-conforming way.

Now, it looks like the purpose of this article is to delve into optimization tweaking in order to

remove unwanted tests, but that wasn’t actually the point. The point of the article was to

explain what these tests are for. You’ll be stepping through some code, and you’ll see these

strange tests against zero, so here’s an explanation of why those tests are there.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

