
1/2

February 11, 2016

Debugging walkthrough: Diagnosing an NX exception
devblogs.microsoft.com/oldnewthing/20160211-00

Raymond Chen

A colleague of mine asked for help debugging a strange failure. Execution halted because the

CPU detected that it was trying to execute data.

ABC!__PchSym_ (ABC+0x67be4)

user32!UserCallWinProcCheckWow+0x140

user32!DispatchClientMessage+0xa2

user32!__fnDWORD+0x2d

ntdll!KiUserCallbackDispatcherContinue

user32!ZwUserPeekMessage+0xa

user32!PeekMessageW+0x7f

explorerframe!CExplorerFrame::FrameMessagePump+0x5b

explorerframe!BrowserThreadProc+0x5e

explorerframe!BrowserNewThreadProc+0x3a

explorerframe!CExplorerTask::InternalResumeRT+0x12

explorerframe!CRunnableTask::Run+0xc9

shell32!CShellTaskThread::ThreadProc+0x284

shell32!CShellTaskThread::s_ThreadProc+0x2b

SHCore!_WrapperThreadProc+0x15f

kernel32!BaseThreadInitThunk+0xd

ntdll!RtlUserThreadStart+0x1d

EXCEPTION_RECORD: (.exr -1)

ExceptionAddress: 00007ffcfd197be4 (ABC+0x67be4)

 ExceptionCode: c0000005 (Access violation)

 ExceptionFlags: 00000000

NumberParameters: 2

 Parameter[0]: 0000000000000008

 Parameter[1]: 00007ffcfd197be4

Attempt to execute non-executable address 00007ffcfd197be4

My colleague suspected that a return address got overwritten by some function deeper in the

stack, and that caused the instruction pointer to jump to a random module, and the victim

module was ABC.

I looked at the crash dump, and came to a different conclusion. The stack is just fine. The

problem is that a DLL got unloaded:

https://devblogs.microsoft.com/oldnewthing/20160211-00/?p=93012

2/2

0:067> lm

...

Unloaded modules:

...

00007ffc`fd140000 00007ffc`fd1ee000 DEF.dll

...

After DEF.dll got unloaded, ABC.DLL got loaded into the same location.

0:067> .reload /unl DEF.dll

WARNING: DEF overlaps ABC

The problem is that DEF.dll unloaded before destroying all its windows. And then its

window received a message (in this case, WM_ACTIVATEAPP , but you were not expected to

know this since it wasn’t in the stack trace). The window manager called the window

procedure, which now points into the middle of ABC.dll . The debugger is correctly

reporting that execution halted in the middle of ABC.dll .

The next step is to engage the people responsible for DEF.dll to figure out why they leaked

a window.

Exercise: What command would be useful at this point to help the DEF.dll identify the

window that they leaked?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

