
1/2

February 5, 2016

If I issue a second overlapped I/O operation without
waiting for the first one to complete, are they still
guaranteed to complete in order?

devblogs.microsoft.com/oldnewthing/20160205-00

Raymond Chen

A customer had a question about the order in which overlapped I/O will complete.

WriteFile(hFile, buffer1, buffer1Length, ..., &overlapped1);

WriteFile(hFile, buffer2, buffer2Length, ..., &overlapped2);

Assume that the hFile handle is opened as FILE_FLAG_OVERLAPPED . Is it guaranteed that

buffer1 will be written to the file before buffer2 ?

The file system team replied that there is no such guarantee. That defeats the point of

opening the file as FILE_FLAG_OVERLAPPED .

The point of overlapped operations is that you can have multiple operations in flight, and

they will be performed in whatever order the I/O subsystem chooses. The second write may

be performed before the first if the I/O subsystem thinks that would be faster. For example,

maybe the second write can be coalesced with another write to the same sector. Or the disk

head happens to be positioned such that seeking to the first buffer position causes it to pass

the second buffer position, so the drive figures, “Well, while I’m here, I may as well write out

this data, so I don’t have to seek back later.”

The customer clarified. “Our application uses overlapped I/O for performance purposes. Our

actual scenario is more complicated than what we wrote, but the basic idea is that we are

receiving data and writing it to a file. We require that the data be written to the file in the

order issued. Do we have to wait for the first I/O to complete before we issue the second

one?”

Yes. If the order in which the operations are performed is important, then you need to

serialize them yourself. But assuming that the two writes are to non-overlapping ranges in

the file, why do you care what order they are performed? At the end of the day, buffer1

will be written to the location specified by overlapped1 , and buffer2 will be written to

the location specified by overlapped2 .

https://devblogs.microsoft.com/oldnewthing/20160205-00/?p=92981

2/2

The customer explained some more: “In both calls to WriteFile , the offset is set to

0xFFFFFFFF`FFFFFFFF , which means that the writes append to the file. Does this change

the answer?”

Sort of, but not in a good way. The two I/O operations race into the I/O subsystem, and

there’s no guarantee that the first one will reach the I/O subsystem first. That part hasn’t

changed. On the other hand, since both operations are writing to the end of the file, the

operations will be serialized once they reach the file system, so you are getting the worst of

both worlds: Not only are the results unpredictable, you lose parallelism.

Note also that the completion callbacks may be called in an order different from the order in

which the operations actually completed. In other words, it’s possible that operation 1

completes before operation 2, but your completion callback for the second operation is called

before the completion callback for the first operation. There is no serialization of completion

callbacks. They race out of the I/O subsystem the same way that they race in!

Curiously, the customer says that they are using overlapped operations for performance, but

then they end up not wanting all the benefits that overlapped operations offer in the first

place, namely letting the I/O subsystem reorder operations to improve performance. It’s

possible that they read somewhere that overlapped operations offer higher performance, but

didn’t understand what that meant. “We pass this flag because the flag means GO FASTER.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

