
1/3

January 29, 2016

Does the thread pool have different handle access
privileges? Why am I getting ERROR_INVALID_HANDLE?

devblogs.microsoft.com/oldnewthing/20160129-00

Raymond Chen

A customer was observing strange behavior in their application with handles and the thread

pool.

https://devblogs.microsoft.com/oldnewthing/20160129-00/?p=92951

2/3

We have a service that spawns a child process, and under certain conditions, we need to
terminate that child process. If I try to terminate the process immediately upon the condition
being met, then everything works. But now we want to wait a little while before terminating the
child process. To do that, we create a thread pool timer and terminate the process from the
thread pool.

Here’s the code that runs when we detect that the condition is met. No errors are detected except
where noted.

PTP_TIMER timerTask = CreateThreadpoolTimer(

 DelayTerminate,

 static_cast<PVOID>(ProcHandle),

 &m_CallBackEnviron);

if (NULL == timerTask) { ... }

// Set the timer to fire after a little while.

ulDueTime.QuadPart = (ULONGLONG)(-TimeOutIn100Nanoseconds);

FileDueTime.dwHighDateTime = ulDueTime.HighPart;

FileDueTime.dwLowDateTime = ulDueTime.LowPart;

SetThreadpoolTimer(timerTask, &FileDueTime, 0, 0);

// if we set the debugging flag, then the TerminateProcess call succeeds.

if (DebuggingFlag) {

 if (!TerminateProcess(ProcHandle, 1)) { ... }

}

Here is our callback function:

VOID

CALLBACK

DelayTerminate(

 PTP_CALLBACK_INSTANCE Instance,

 PVOID Parameter,

 PTP_TIMER Timer

)

{

 // This call to TerminateProcess fails

 if (!TerminateProcess((HANDLE)Parameter, 1)) {

 Log(GetLastError()); // ERROR_INVALID_HANDLE

 }

 CloseThreadpoolTimer(Timer);

}

Does the thread pool thread run with different access privileges from the main thread?

3/3

We verified that the handle is the same in the main thread and in the callback. It is our
understanding that DuplicateHandle is not needed to share handles between threads of a
single process. Is there some other special thing that has to be done in order to share the handle
between threads?

I asked, “Is it possible that somebody closed the handle in the meantime?” After all, if the

problem were due to access, then you would expect the error to be ERROR_ACCESS_DENIED .

Since the error is ERROR_INVALID_HANDLE , the most likely reason is, um, an invalid handle.

A clue that something strange is going on is the static_cast<PVOID>(ProcHandle) . This

suggests that ProcHandle is not itself a HANDLE , but is rather some sort of RAII class that

manages a process handle and which has an implicit conversion to HANDLE . (Because if

ProcHandle were a HANDLE , then you wouldn’t need to cast it to PVOID .)

The customer eventually wrote back,

Yes, that was it. We found that the handle was being closed before the thread pool tried to use it.
Thanks.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

