
1/3

October 22, 2015

What are the rules for CoMarshalInterface and
CoUnmarshalInterface?

devblogs.microsoft.com/oldnewthing/20151022-00

Raymond Chen

Last time, we looked at the rules for CoMarshalInterThreadInterfaceInStream and Co‐

GetInterfaceAndReleaseStream , the functions you use for sharing an object with another

thread in the sample case where you there is only one other thread you want to share with,

and you need to share it only once. Let’s continue with the Q&A.

What if I want to unmarshal more than once?

In this case, you use the more general CoMarshalInterface . You can pass the

MSHLFLAGS_TABLESTRONG flag to indicate that you want to be able to unmarshal many

times. In that case, you need to tell COM when you are finished unmarshaling so it knows

when to clean up, because it cannot assume that you are finished after the first unmarshal.

The pattern goes like this:

On the originating apartment, create an empty stream.

On the originating apartment, call CoMarshalInterface with the empty stream and

the MSHLFLAGS_TABLESTRONG flag.

Transmit a copy of the stream to each of the threads you want to share the object with.

(You need to use a copy so that the multiple threads don’t all try to use the same stream

and step on each other’s stream position. Alternatively, you could be clever and use the

same stream, but use a mutex or other synchronization object to make sure only one

thread uses the stream at a time.)

The receiving threads rewind the stream copy to the beginning.

The receiving threads call CoGetInterfaceAndReleaseStream to reconstitute the

object from the stream and release the stream.¹

The receiving threads happily accesses the object.

When the originating apartment decides that it doesn’t want to share the object any

more, it calls CoReleaseMarshalData to tell COM to clean up all the bookkeeping.

The originating apartment destroys the master stream.

What is the relationship between CoMarshalInterThreadInterfaceInStream and

CoMarshalInterface ?

https://devblogs.microsoft.com/oldnewthing/20151022-00/?p=91301

2/3

The CoMarshalInterThreadInterfaceInStream function is a helper function that does

the following:

CreateStreamOnHGlobal .

CoMarshalInterface with MSHCTX_INPROC and MSHLFLAGS_NORMAL .

Rewinds the stream to the beginning.

Returns the stream.

Similarly, CoGetInterfaceAndReleaseStream is a helper function that does

CoUnmarshalInterface

IStream::Release

Since a one-shot marshal to another thread within the same process is by far the most

common case, the helper functions exist to let you get the job done with just one function call

on each side.

What if I want to marshal only once, but to another process?

Again, you need to use the more general CoMarshalInterface function. This time, you

pass the MSHCTX_LOCAL flag if you intend to marshal to another process on the same

computer, or the MSHCTX_DIFFERENTMACHINE flag if you intend to marshal to another

computer. For the marshal flags, use MSHLFLAGS_NORMAL to indicate that you want a one-

shot marshal. The recipient can unmarshal with CoGetInterfaceAndReleaseStream as

before.

What if I want to marshal to another process and unmarshal more than once?

This is just combining the two axes. On the marshaling side, you do the same as a one-shot

cross-process marshal, except you pass the MSHLFLAGS_TABLESTRONG flag to indicate that

you want to be able to unmarshal many times. You then send copies of that stream to all your

intended recipients, and each of them calls CoGetInterfaceAndReleaseStream , just like

before.

Can you marshal a proxy? Does it get all Inception-like?

Go ahead and marshal a proxy. COM detects that you’re marshaling a proxy and does the

Right Thing. For example, if you marshal a proxy back to the originating thread, then when

you unmarshal, you get a direct pointer again!

¹ If the thread wants to unmarshal from the stream than once, it could call CoUnmarshal‐

Interface and not release the stream immediately. Then each time it wants to unmarshal

from the stream, it calls CoUnmarshalInterface again, releasing the stream only when it

has decided that it will not do any more unmarshaling. This seems silly because once you

3/3

unmarshal the first time, you can just AddRef the pointer if you want to make another copy.

I guess this is for the case where the thread wants to pass the stream off to yet another

thread? Definitely a fringe case.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

