
1/2

October 8, 2015

What happens if you call VirtualAlloc to MEM_COMMIT a
page you never MEM_RESERVE?

devblogs.microsoft.com/oldnewthing/20151008-00

Raymond Chen

A customer reported that while trying to solve a problem with their program, they noticed

that they had been calling VirtualAlloc incorrectly for years. They were able to reduce it

into a simple program:

#include <windows.h>

#include <stdio.h>

#include <tchar.h>

int _tmain(int argc, _TCHAR* argv[])

{

LPVOID base = VirtualAlloc(NULL, 4096, MEM_COMMIT, PAGE_READWRITE);

_tprintf(TEXT("Allocated at %p\n"), base);

return 0;

}

First of all, thank you for reducing your program. That really focuses the investigation.

The customer noted that their code was passing the MEM_COMMIT flag without the

MEM_RESERVE flag, a scenario that is specifically called out in the documentation:

The function fails if you attempt to commit a page that has not been reserved. The resulting
error code is ERROR_INVALID_ADDRESS.

But their call to VirtualAlloc was succeeding! The customer suspected that this was not

actually the source of their problem, but they wanted to double-check that perhaps their

incorrect use of VirtualAlloc was somehow indirectly contributing to it. Specifically, they

were wondering if what they’re doing is okay, or whether they should always use

MEM_RESERVE | MEM_COMMIT .

What the customer found is a compatibility hack. A lot of application forget to set the

MEM_RESERVE flag when they MEM_COMMIT , so the memory manager lets it slide if they also

pass lpAddress = NULL , indicating that they are requesting a new allocation rather than

modifying an existing one.

https://devblogs.microsoft.com/oldnewthing/20151008-00/?p=91411
http://blogs.msdn.com/b/oldnewthing/archive/2013/10/18/10457796.aspx

2/2

The problem is that MSDN fell into the trap of over-documenting. Instead of documenting

the contract, MSDN documented the implementation. The contract is “A page being

committed must also be reserved.” If you try to commit a page that is not also reserved, then

the behavior is unspecified. It is therefore valid for the implementation to treat the violation

as “Sorry, you lose,” or “Okay, I’ll let you do it, but just this time.”

It appears that some time after this issue was identified, the MSDN documentation was

revised. But they didn’t revise it by documenting the contract. They revised it by

documenting the implementation more precisely.

Attempting to commit a specific address range by specifying MEM_COMMIT without
MEM_RESERVE and a non-NULL lpAddress fails unless the entire range has already been
reserved. The resulting error code is ERROR_INVALID_ADDRESS.

My recommendation to the customer was to switch to MEM_RESERVE | MEM_COMMIT , since

that is the preferred behavior and therefore the one least likely to trigger compatibility

behavior. But the fact that they were accidentally omitting the MEM_RESERVE was not related

to their problem, and they should keep looking.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

