
1/2

September 4, 2015

Using an intermediate library to make the main library
retargetable

devblogs.microsoft.com/oldnewthing/20150904-00

Raymond Chen

A customer was developing a static library targetting both Windows XP Win32 applications

and universal Windows apps. (This was before Windows XP reached end-of-life.)

Our library uses critical sections, but unfortunately there is no version Initialize‐
CriticalSection that is available to both Windows XP Win32 applications and universal
Windows apps. Universal Windows apps must use InitializeCriticalSectionEx , but
that function is not available to Windows XP Win32 applications. Is there a way to dynamically
target both Windows XP Win32 applications and universal Windows apps, pass WACK
validation, and still have one library?

We thought we could use GetModuleHandle and GetProcAddress to detect which
platform we are one, but GetModuleHandle is not allowed in universal Windows apps, so
we’re back where we started.

Are we stuck having two versions of our library, one for Windows XP Win32 applications and
one for universal Windows apps?

Runtime dynamic linking (LoadLibrary , GetProcAddress) is not permitted in universal

Windows apps, which means that for universal Windows apps, you must have an entry for

InitializeCriticalSectionEx in your import table. But if that function is in your input

table, then it won’t load on Windows XP.

(You might think that you could have a second library to be used by Windows XP clients that

implements the InitializeCriticalSectionEx function. Unfortunately, you will run

afoul of dllimport.)

You are going to have to have separate libraries at some point, but you don’t have to have two

versions of your library. You could build your library to call, say, ContosoInitialize‐

CriticalSection , and have two helper libraries, one for Windows XP Win32 applications

and one for universal Windows apps, each of which implement the ContosoInitialize‐

CriticalSection function in a manner appropriate to the target.

https://devblogs.microsoft.com/oldnewthing/20150904-00/?p=91661
http://blogs.msdn.com/b/oldnewthing/archive/2006/07/26/679044.aspx

2/2

In other words, people targeting Windows XP would link to ContosoCore.dll and

ContosoXPSupport.dll . People writing universal Windows apps would link to

ContosoCore.dll and ContosoStoreSupport.dll .

This approach has a few advantages:

It’s simple, works (because it’s so simple), and everybody understands it.

All the files in your core library need to be compiled only once.

The second clause pays off if your library is large, or if you need to add new operating system

targets.

Update: I guess I didn’t make it clear. My suggestion is that ContosoCore.dll link to the

nonexistent ContosoSupport.dll . If your program targets Windows XP, then rename

ContosoXPSupport.dll to ContosoSupport.dll . If your program is a universal

Windows app, then rename ContosoStoreSupport.dll to ContosoSupport.dll .

This technique also works with static libraries. You have a single ContosoCore.lib which

calls a ContosoInitializeCriticalSection function. There are two implementations of

ContosoInitializeCriticalSection , one in ContosoXPSupport.lib and another in

ContosoStoreSupport.lib . Each application chooses which support library to link in.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

