
1/5

August 31, 2015

How do I enumerate remembered connections that are
not currently connected?

devblogs.microsoft.com/oldnewthing/20150831-00

Raymond Chen

Harry Johnston wanted to know how to get a list of remembered (but not currently

connected) drive mappings.

The idea here is to make a tweak to the Little Program. Start with what we had and make

these changes:

int __cdecl main(int, char **)

{

HANDLE hEnum;

WNetOpenEnum(RESOURCE_REMEMBERED,

 RESOURCETYPE_DISK,

 0,

 NULL,

 &hEnum);

...

}

This changes the program from enumerating connected resources to enumerating

remembered resources.

The last step is to skip the remembered resources that are also connected. But this part is not

Win32 programming; it’s just programming, For each remembered resource, check if the

lpLocalName is non-null and matches an lpLocalName that came out of an enumeration

of connected resources.

So let’s do it. We start with the header files:

https://devblogs.microsoft.com/oldnewthing/20150831-00/?p=91701
http://blogs.msdn.com/307138/ProfileUrlRedirect.ashx
http://blogs.msdn.com/b/oldnewthing/archive/2014/11/17/10573408.aspx#10573696
http://blogs.msdn.com/b/oldnewthing/archive/2014/11/17/10573408.aspx

2/5

#define UNICODE

#define _UNICODE

#define STRICT

#include <windows.h>

#include <stdio.h> // horrors! Mixing C and C++ I/O!

#include <string>

#include <set>

#include <memory>

#include <winnetwk.h>

Since we are using classes like std::set which throw exceptions, we need to wrap our

resources inside RAII classes. Here’s one for network resource enumeration:

class CNetEnumerator

{

public:

CNetEnumerator() = default;

~CNetEnumerator() { if (m_hEnum) WNetCloseEnum(m_hEnum); }

operator HANDLE() { return m_hEnum; }

HANDLE* operator&() { return &m_hEnum; }

private:

HANDLE m_hEnum = nullptr;

};

Here is our function to enumerate all network resources. It uses a callback because

arghhhhhhhhhhh wishes it were so.

http://blogs.msdn.com/b/oldnewthing/archive/2014/11/17/10573408.aspx#10573690

3/5

template<typename Callback>

void for_each_network_resource(

 DWORD dwScope,

 DWORD dwType,

 DWORD dwUsage,

 LPNETRESOURCE pnrIn,

 Callback callback)

{

CNetEnumerator hEnum;

WNetOpenEnum(dwScope, dwType, dwUsage, pnrIn, &hEnum);

const DWORD elements = 65536 / sizeof(NETRESOURCE);

static_assert(elements > 1, "Must have room for data");

std::unique_ptr<NETRESOURCE> buffer(new NETRESOURCE[elements]);

DWORD err;

do {

 DWORD cEntries = INFINITE;

 DWORD cb = elements * sizeof(NETRESOURCE);

 err = WNetEnumResource(hEnum, &cEntries, buffer.get(), &cb);

 if (err == NO_ERROR || err == ERROR_MORE_DATA) {

 for (DWORD i = 0; i < cEntries; i++) {

 callback(&buffer[i]);

 }

 }

} while (err == ERROR_MORE_DATA);

}

There is a bit of trickery to get the enumeration buffer into a form that C++ likes. We had

previously used LocalAlloc , which is guaranteed to return memory suitably aligned for

NETRESOURCE . However, we can’t do it for new BYTE[] , since that returns only byte-

aligned data. We solve this problem by explicitly allocating NETRESOURCE objects, but

choosing a number so that the result is close to our desired buffer size.¹

We need another helper class so we can create a case-insensitive set.

struct CaseInsensitiveWstring

{

bool operator()(const std::wstring& a, const std::wstring& b) const {

 return CompareStringOrdinal(a.c_str(), a.length(),

 b.c_str(), b.length(), TRUE) == CSTR_LESS_THAN;

}
};

Okay, now we can start doing actual work:

4/5

void report(PCWSTR pszLabel, PCWSTR pszValue)

{

printf("%ls = %ls\n", pszLabel, pszValue ? pszValue : L"(null)");

}

int __cdecl wmain(int, wchar_t **)

{

std::set<std::wstring, CaseInsensitiveWstring> connected;

// Collect the local resources which are already connected.

for_each_network_resource(RESOURCE_CONNECTED,

 RESOURCETYPE_DISK, 0, nullptr, [&](LPNETRESOURCE pnr) {

 if (pnr->lpLocalName != nullptr) {

 connected.emplace(pnr->lpLocalName);

 }

 });

// Now look for remembered resources that are not connected.

for_each_network_resource(RESOURCE_REMEMBERED,

 RESOURCETYPE_DISK, 0, nullptr, [&](LPNETRESOURCE pnr) {

 if (pnr->lpLocalName == nullptr ||

 connected.find(pnr->lpLocalName) == connected.end()) {

 report(L"localName", pnr->lpLocalName);

 report(L"remoteName", pnr->lpRemoteName);

 report(L"provider", pnr->lpProvider);

 printf("\n");

 }

 });

return 0;

}

Not exciting. Mostly consists of boring typing. But hey, that’s what programming is like most

of the time.

¹ If we were being super-weenies about the buffer size, we could have written

union EnumBuffer {

 BYTE bytes[65536];

 NETRESOURCE nr;

};

std::unique_ptr<EnumBuffer> buffer(new EnumBuffer());

LPNETRESOURCE pnr = &buffer->nr;

...

 DWORD cb = sizeof(EnumBuffer);

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

