
1/2

August 19, 2015

If you are going to call Marshal.GetLastWin32Error, the
function whose error you’re retrieving had better be the
one called most recently

devblogs.microsoft.com/oldnewthing/20150819-00

Raymond Chen

Even if you remember to set SetLastError=true  in your p/invoke signature, you still have

to be careful with Marshal.GetLastWin32Error  because there is only one last-error code,

and it gets overwritten each time.

So let’s try this program:

using System;

using System.Runtime.InteropServices;


class Program

{

 [DllImport("user32.dll", SetLastError=true)]

 public static extern bool OpenIcon(IntPtr hwnd);


 public static void Main()

 {

   // Intentionally pass an invalid parameter.

   var result = OpenIcon(IntPtr.Zero);

   Console.WriteLine("result: {0}", result);

   Console.WriteLine("last error = {0}",

                     Marshal.GetLastWin32Error());

 }

}


The expectation is that the call to OpenIcon  will fail, and the error code will be some form

of invalid parameter.

But when you run the program, it prints this:

result: False

last error = 0


Zero?

https://devblogs.microsoft.com/oldnewthing/20150819-00/?p=91781


2/2

Zero means “No error”. But the function failed. Where’s our error code? We printed the

result immediately after calling OpenIcon . We didn’t call any other p/invoke functions. The

last-error code should still be there.

Oh wait, printing the result to the screen involves a function call.

That function call might itself do a p/invoke!

We have to call Marshal.GetLastWin32Error  immediately after calling OpenIcon .

Nothing else can sneak in between.

using System;

using System.Runtime.InteropServices;


class Program

{

 [DllImport("user32.dll", SetLastError=true)]

 public static extern bool OpenIcon(IntPtr hwnd);


 public static void Main()

 {

   // Intentionally pass an invalid parameter.

   var result = OpenIcon(IntPtr.Zero);

   var lastError = Marshal.GetLastWin32Error();

   Console.WriteLine("result: {0}", result);

   Console.WriteLine("last error = {0}",

                     lstError);

 }

}


Okay, now the program reports the error code as 1400: “Invalid window handle.”

This one was pretty straightforward, because the function call that modified the last-error

code was right there in front of us. But there are other ways that code can run which are more

subtle.

If you retrieve a property, the property retrieval may involve a p/invoke.

If you access a class that has a static constructor, the static constructor will secretly run

if this is the first time the class is used.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

