
1/4

August 14, 2015

Windows started picking up the really big pieces of
TerminateThread garbage on the sidewalk, but it’s still
garbage on the sidewalk

devblogs.microsoft.com/oldnewthing/20150814-00

Raymond Chen

Ah, TerminateThread . There are still people who think that there are valid scenarios for

calling TerminateThread .

Can you explain how ExitThread works?

We are interested because we have a class called ThreadClass . We call the Start()
method , and then the Stop() method, and then the WaitUntilStopped() method, and
then the process hangs with this call stack:

ntdll!ZwWaitForSingleObject

ntdll!RtlpWaitOnCriticalSection

ntdll!RtlEnterCriticalSection

ntdll!LdrShutdownThread

ntdll!RtlExitUserThread

kernel32!BaseThreadInitThunk

ntdll!RtlUserThreadStart

Can you help us figure out what’s going on?

From the stack trace, it is clear that the thread is shutting down, and the loader (Ldr) is

waiting on a critical section. The critical section the loader is most famous for needing is the

so-called loader lock which is used for various things, most notably to make sure that all DLL

thread notification are serialized.

I guessed that the call to WaitUntilStopped() was happening inside DllMain , which

created a deadlock because the thread cannot exit until it delivers its DllMain notifications,

but it can’t do that until the calling thread exits DllMain .

The customer did some more debugging:

https://devblogs.microsoft.com/oldnewthing/20150814-00/?p=91811

2/4

The debugger reports the critical section as

CritSec ntdll!LdrpLoaderLock+0 at 77724300

WaiterWoken No

LockCount 3

RecursionCount 1

OwningThread a80

EntryCount 0

ContentionCount 3

*** Locked

The critical section claims that it is owned by thread 0xa80 , but there is no such active thread
in the process. In the kernel debugger, a search for that thread says

Looking for thread Cid = a80 ...

THREAD 8579e1c0 Cid 0b58.0a80 Teb: 00000000 Win32Thread: 00000000 TERMINATED

Not impersonating

DeviceMap 862f8a98

Owning Process 0 Image: <Unknown>

Attached Process 84386d90 Image: Contoso.exe

Wait Start TickCount 12938474 Ticks: 114780 (0:00:29:50.579)

Context Switch Count 8

UserTime 00:00:00.000

KernelTime 00:00:00.000

Win32 Start Address 0x011167c0

Stack Init 0 Current bae35be0 Base bae36000 Limit bae33000 Call 0

Priority 10 BasePriority 8 PriorityDecrement 2 IoPriority 2 PagePriority 5

Contoso.exe is our process.

Okay, we’re getting somewhere now. The thread 0xa80 terminated while it held the loader

lock. When you run the program under a debugger, do you see any exceptions that might

suggest that the thread terminated abnormally?

We found the cause of the problem. We use TerminateThread in the other place. That
causes the thread to continue to hold the loader lock after it has terminated.

It’s not clear what the customer meant by “the other place”, but no matter. The cause of the

problem was found: They were using TerminateThread .

At this point, Larry Osterman was inspired to write a poem.

How many times does

it have to be said: Never

call TerminateThread.

In the ensuing discussion, somebody suggested,

3/4

One case where it is okay to use TerminateThread is if the thread was created suspended
and has never been resumed. I believe it is perfectly legal to terminate it, at least in Windows
Vista and later.

No, it is not “perfectly legal,” for certain values of “perfectly legal.”

What happened is that Windows Vista added some code to try to limit the impact of a bad

idea. Specifically, it added code to free the thread’s stack when the thread was terminated, so

that each terminated thread didn’t leak a megabyte of memory. In the parlance of earlier

discussion, I referred to this as stop throwing garbage on the sidewalk.

In this case, it’s like saying, “It’s okay to run this red light because the city added a delayed

green to the cross traffic.” The city added a delayed green to the cross traffic because people

were running the light and the city didn’t want people to die. That doesn’t mean that it’s okay

to run the light now.

Unfortunately, the guidance that says “Sometimes it’s okay to call TerminateThread ” has

seeped into our own Best Practices documents. The Dynamic-Link Library Best Practices

under Best Practices for Synchronization describes a synchronization model which actually

involves calling TerminateThread .

Do not do this.

It’s particularly sad because the downloadable version of the document references both Larry

and me telling people to stop doing crazy things in DllMain , and terminating threads is

definitely a crazy thing.

(The solution to the problem described in the whitepaper is not to use TerminateThread .

It’s to use the FreeLibraryAndExitThread pattern.)

Now the history.

Originally, there was no TerminateThread function. The original designers felt strongly

that no such function should exist because there was no safe way to terminate a thread, and

there’s no point having a function that cannot be called safely. But people screamed that they

needed the TerminateThread function, even though it wasn’t safe, so the operating system

designers caved and added the function because people demanded it. Of course, those people

who insisted that they needed TerminateThread now regret having been given it.

It’s one of those “Be careful what you wish for” things.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2010/03/11/9976571.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn633971(v=vs.85).aspx
https://view.officeapps.live.com/op/view.aspx?src=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2Fa%2Ff%2F7%2Faf7777e5-7dcd-4800-8a0a-b18336565f5b%2FDLL_bestprac.doc
http://blogs.msdn.com/b/oldnewthing/archive/2013/11/05/10463645.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

