
1/6

August 3, 2015

The Itanium processor, part 6: Calculating conditionals
devblogs.microsoft.com/oldnewthing/20150803-00

Raymond Chen

The Itanium does not have a flags register. A flags register creates implicit dependencies

between instructions, which runs contrary to the highly parallel model the Itanium was

designed for. Instead of implicitly setting a register after computations, the Itanium has

explicit comparison operations that put the comparison result into dedicated predicate

registers.

Here’s a simple fragment that performs some operation if two registers are equal.

 cmp.eq p6, p7 = r32, r33 ;;

(p6) something

The cmp instruction compares two values and sets the two specified predicate registers as

follows:

p6 is true if the values satisfy the condition, or false if they do not satisfy the condition.

p7 is set to the opposite of p6

The comparison operation generates two results, one which holds the nominal result and one

which holds the opposite. This lets you conditionalize both sides of a branch.

 cmp.eq p6, p7 = r32, r33 ;;

(p6) something // executes if they are equal

(p7) something // executes if they are not equal

There is also a cmp4 instruction which compares two 32-bit values, in which case only the

least-significant 32 bits participate in the comparison.

The comparands can be either two registers or an immediate and a register. The immediate is

an 8-bit sign-extended value, though the final value may be interpreted as unsigned

depending on the comparison type.

There are three comparison types:

type meaning

https://devblogs.microsoft.com/oldnewthing/20150803-00/?p=91191

2/6

eq equality

lt signed less than

ltu unsigned less than

The first destination predicate register receives result of the test, and the second gets the

opposite of the result.

These are the only comparisons you will see in disassembly, but the compiler can

manufacture other types of comparisons. For example, if the compiler wants to perform a ge

comparison, it can just do a lt comparison and flip the order of the two predicates.

More generally, the compiler can synthesize the other integer comparisons as follows:

imaginary
opcode meaning synthesized as

cmp.ne p, q = a,
b

not equal cmp.eq q, p = a, b

cmp.ge p, q = a,
b

signed greater than or
equal

cmp.lt q, p = a, b

cmp.gt p, q = a, b signed greater than cmp.lt p, q = b, a if a is a register

cmp.lt q, p = a − 1,
b

if a is an
immediate

cmp.le p, q = a, b signed less than or equal cmp.lt q, p = b, a if a is a register

cmp.lt p, q = a − 1,
b

if a is an
immediate

cmp.geu p, q = a,
b

unsigned greater than or
equal

cmp.ltu q, p = a, b

cmp.gtu p, q = a,
b

unsigned greater than cmp.ltu p, q = b, a if a is a register

cmp.ltu q, p = a −
1, b

if a is an
immediate

cmp.leu p, q = a,
b

unsigned less than or equal cmp.ltu q, p = b, a if a is a register

cmp.ltu p, q = a −
1, b

if a is an
immediate

These syntheses rely on the identities

3/6

x > y ⇔ y < x

x ≤ y ⇔ ¬(x > y)

x ≤ y ⇔ x − 1 < y for integers x and y, assuming no overflow

x ≥ y ⇔ y ≤ x

The next level of complexity is the parallel comparisons. These perform a comparison and

combine the result with the values already in the destination predicates.

opcode meaning really

cmp.xx.or p, q = a, b p = p || (a xx b)

q = q || (a xx b)

if (a xx b) then p = q = true

cmp.xx.orcm p, q = a, b p = p || ¬(a xx b)

q = q || ¬(a xx b)

if ¬(a xx b) then p = q = true

cmp.xx.and p, q = a, b p = p && (a xx b)

q = q && (a xx b)

if ¬(a xx b) then p = q = false

cmp.xx.andcm p, q = a, b p = p && ¬(a xx b)

q = q && ¬(a xx b)

if (a xx b) then p = q = false

cmp.xx.or.andcm p, q = a, b p = p || (a xx b)

q = q && ¬(a xx b)

if (a xx b) then p = true, q = false

cmp.xx.and.orcm p, q = a, b p = p && (a xx b)

q = q || ¬(a xx b)

if ¬(a xx b) then p = false, q = true

The meaning column describes how it is convenient to think of the operations, but the really

column describes how they actually work.

The orcm and andcm versions take the complement of the comparison, which is handy

because some of the synthesized comparisons involve taking the opposite of the specified

result.

These parallel comparisons get their name because they are designed to have multiple copies

executed in parallel. Consequently, they are an exception to the general rule that you can

write to a register only once per instruction group. If all writes to a predicate register are

AND-like (i.e., and or andcm) or all writes are OR-like (i.e., or or orcm), then the

writes are allowed to coexist within a single instruction group. (This is where the actually

column comes in handy. You can see that all AND-like operations either do nothing or set the

4/6

predicate to false, and that all OR-like operations either do nothing or set the predicate to

true. That’s why they can run in parallel: If multiple conditions pass, they all do the same

thing, so it doesn’t matter which one goes first.)

Executing them in parallel lets you perform multiple tests in a single cycle. For example:

x = ... calculate x ...;

y = ... calculate y ...;

z = ... calculate z ...;

if (x == 0 || y == 0 || z == 0) {

 something_is_zero;

} else {

 all_are_nonzero;

}

could be compiled as

 ... calculate x in r29 ...

 ... calculate y in r30 ...

 ... calculate z in r31 ...

 cmp.eq p6, p7 = +1, r0 ;; // set p6 = false, p7 = true

 cmp.eq.or.andcm p6, p7 = r29, r0 // p6 = p6 || x == 0

 // p7 = p7 && x != 0

 cmp.eq.or.andcm p6, p7 = r30, r0 // p6 = p6 || y == 0

 // p7 = p7 && y != 0

 cmp.eq.or.andcm p6, p7 = r31, r0 ;; // p6 = p6 || z == 0

 // p7 = p7 && z != 0

(p6) something_is_zero

(p7) all_are_nonzero

First, we calculate the values of x, y and z. At the same time, we prime the parallel

comparison: we compare the constant +1 against register r0, which is the hard-coded zero

register. This comparison always fails, so we set p6 to false and p7 to true.

Now we perform the three comparisons in parallel. We check if r29, r30, and r31 are zero. If

any of them is zero, then p6 becomes true and p7 becomes false. If all are nonzero, then

nothing changes, so p6 stays false and p7 stays true.

Finally, we act on the calculated predicates.

Notice that the parallel comparison lets us calculate and combine all the parts of the test in a

single cycle. In a flags-based architecture, we would have to perform a comparison, test the

result, then perform another comparison, test the result, then perform the last comparison,

and test the result one last time. That’s a sequence of six dependent operations, which is

difficult to parallelize. (And most likely consume three branch prediction slots instead of just

one.)

5/6

The last wrinkle in the comparison instructions is the so-called unconditional comparison.

This special instruction violates the rule that a predicated instruction has no effect if the

predicate is false.

(qp) cmp.xx.unc p, q = r, s

Even though there is a qualifying predicate, this comparison is executed unconditionally (as

indicated by the unc suffix). The behavior of an unconditional comparison is

p = qp && (r xx s)

p = qp && ¬(r xx s)

In other words, if the qualifying predicate is true, then the instruction behaves as normal. But

if the qualifying predicate is false, then the result of the comparison is considered false for all

branches, regardless of the actual test.

This formulation is handy when you are nesting predicates. Consider:

x = ... calculate x ...;

y = ... calculate y ...;

if (x == 0) {

 x_is_zero;

} else {

 x_is_nonzero;

 if (y == 0) {

 x_is_nonzero_and_y_is_zero;

 } else {

 both_are_nonzero;

 }

}

This can be compiled like this:

 ... calculate x in r30 ...

 ... calculate y in r31 ...

 cmp.eq p6, p7 = r30, r0 ;;

(p6) x_is_zero

(p7) x_is_nonzero

(p7) cmp.eq.unc p8, p9 = r31, r0 ;;

(p8) x_is_nonzero_and_y_is_zero

(p9) both_are_nonzero

After calculating x and y, we check whether x is zero. If it is, then we execute x_is_zero. If

not, then we execute x_is_nonzero. Next, we check whether y is zero, and we do so via an

unconditional comparison. That way, if we are in the case that x is zero, then both p8 and p9

6/6

are set to false. Now we can use p8 and p9 to select between the final two branches. (Or if x is

zero, neither gets selected.)

We’ll see later that the unconditional comparison is also useful in register rotation.

So that’s a quick tour of the Itanium conditional instructions. Next time, we’ll start looking at

speculation.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

