
1/4

July 30, 2015

The Itanium processor, part 4: The Windows calling
convention, leaf functions

devblogs.microsoft.com/oldnewthing/20150730-00

Raymond Chen

Last time, we looked at the general rules for parameter passing on the Itanium. But those

rules are relaxed for leaf functions (functions which call no other functions).

Before we start, I need to correct some of the explanation I had given when introducing the

calling convention. I used that explanation because it makes for an easier conceptual model,

but the reality is slightly different.

First of all, I said that the alloc function shuffles the registers around and lays out the new

local region and output registers. In reality, it is the br.call instruction that moves the

registers and the alloc which sets up the register frame. Since the first instruction of a

function is alloc , it doesn’t make much difference how the work is distributed between the

br.call and the alloc since they come right after each other. The only time you notice

the difference is if you happen to break into the debugger immediately between those two

instructions.

More precisely, here’s what the br.call instruction does:

Copy the current register frame state (and some other stuff) to the pfs register.

Rotate the registers so that the first output register is now r32.

Create a new register frame as follows:

input registers = caller’s output registers

no local registers

no output registers

no rotating registers

Set the rp register to the return address.

Transfer control to the target.

In other words, the register stack changes like this:

r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43

https://devblogs.microsoft.com/oldnewthing/20150730-00/?p=90791
https://blogs.msdn.microsoft.com/oldnewthing/20150729-00/?p=90801

2/4

f‘s Input f‘s Local f‘s Output   Before f does a br.c

r32 r33 r34

On entry to g  g‘s Input

r32 r33 r34 r35 r36 r37 r38 r3

After g does an alloc   g‘s Input g‘s Local g‘

A consequence of this division of labor between br.call and alloc is that leaf functions

can take advantage of this default register frame: If a leaf function can do all its work with

just

its input registers

scratch registers

the red zone

then it doesn’t need to perform an alloc at all! It can use the default register allocation of

“Caller’s output registers become my input registers, and I have no local registers or output

registers.” When finished, the function just does a br.ret rp to return to the caller.

Note that this optimization is available only to leaf functions. If the function calls another

function, then the br.call will overwrite the pfs and rp registers, which will make it

hard to return to your caller when you’re done.

The red zone is officially known as the scratch area. The first 16 bytes on the stack are

available for use by the currently executed function. If you want values to be preserved across

a function call, you need to move them out of the scratch area, because they become the

scratch area for the function being called! In other words, the scratch area is not preserved

across function calls.

A more obscure consequence of this division of labor between br.call and alloc is that

a function could in principle perform alloc more than once in order to change the size of

its local region or the number of output registers. For example, a function might start by

saying, “I have five local registers and two output registers,” and then later realize, “Oh, wait,

I need to call a function with six parameters. I will issue a new alloc instruction that

requests five local registers and six output registers.” Although technically legal, it doesn’t

often occur in practice because it’s usually easier just to set up your register state once and

stick with it for the duration of the function.

http://blogs.msdn.com/b/oldnewthing/archive/2004/01/13/58199.aspx

3/4

A more common case where this occurs is when a function has an early exit that can be

determined using only leaf-available resources.

extern HANDLE LogFile;

void Log(char *message, char *file, int line)

{

if (!LogFile) return;

... complicated logging code goes here ...

}

If profiling feedback indicates that logging is rarely enabled, then the compiler can avoid

setting up all the registers and stack for the complicated logging code, at least until it knows

that logging is enabled.

.Log:

 addl r30, -205584, gp ;; // get address of LogFile variable

 ld8 r30, [r30] ;; // fetch the value

 cmp.eq p6, p0 = r30, r0 // is it zero?

(p6) br.ret rp // return if so

 // Okay, we are really logging. Set up our stack.

 alloc r35 = ar.pfs, 3, 5, 6, 0 // set up register frame

 sub sp = sp, 0x240 // set up stack buffers

 mov r36 = ra // save return address

 ... do complicated logging ...

 mov rp = r36 // return address

 mov.i ar.pfs = r34 // restore pfs

 br.ret.sptk.many rp ;; // return to caller

The first instruction calculates the effective address of the LogFile variable. We’ll learn

more about the gp register later.

The second instruction loads an 8-byte value from that address, thereby retrieving the value

of LogFile .

The third instruction compares the value against r0, which is a hard-coded zero register. It

asks for an equality comparison, putting the answer in the predicate variable p6 (and putting

the complement of the answer in p0, which effectively throws it away).

The fourth instruction conditionally returns from the function if the comparison was true. In

the common case where logging is not enabled, the function returns at this point. Only if

logging is enabled do the alloc and related instructions execute to set up the stack frame

and then perform the complicated logging.

4/4

This is an example of an optimization known as shrink-wrapping. Shrink-wrapping occurs

when a function does some work with a temporary stack frame, and then expands to a full

stack frame only if it is needed. (Shrink-wrapping entails a few extra entries in the unwind

exception table because the unwinding needs to take place differently depending on where in

the function the exception occurred. I’ll spare you the details.)

Okay, that’s all for leaf functions and getting to the bottom of the whole br.call / alloc

dance. Next time, we’ll look at function pointers and the funky gp register. Here’s something

to whet your appetite: On ia64, a function pointer is not the address of the first instruction in

the function’s code. In fact, it’s nowhere near the function’s code.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20150731-00/?p=90771
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

