
1/6

July 27, 2015

The Itanium processor, part 1: Warming up
devblogs.microsoft.com/oldnewthing/20150727-00

Raymond Chen

The Itanium may not have been much of a commercial success, but it is interesting as a

processor architecture because it is different from anything else commonly seen today. It’s

like learning a foreign language: It gives you an insight into how others view the world.

The next two weeks will be devoted to an introduction to the Itanium processor architecture,

as employed by Win32. (Depending on the reaction to this series, I might also do a series on

the Alpha AXP.)

I originally learned this information in order to be able to debug user-mode code as part of

the massive port of several million lines of code from 32-bit to 64-bit Windows, so the focus

will be on being able to read, understand, and debug user-mode code. I won’t cover kernel-

mode features since I never had to learn them.

Introduction

The Itanium is a 64-bit EPIC architecture. EPIC stands for Explicitly Parallel Instruction

Computing, a design in which work is offloaded from the processor to the compiler. For

example, the compiler decides which operations can be safely performed in parallel and

which memory fetches can be productively speculated. This relieves the processor from

having to make these decisions on the fly, thereby allowing it to focus on the real work of

processing.

Registers overview

There are a lot of registers.

128 general-purpose integer registers r0 through r127, each carrying 64 value bits and a

trap bit. We’ll learn more about the trap bit later.

128 floating point registers f0 through f127.

64 predicate registers p0 through p63.

8 branch registers b0 through b7.

An instruction pointer, which the Windows debugging engine for some reason calls iip.

(The extra “i” is for “insane”?)

https://devblogs.microsoft.com/oldnewthing/20150727-00/?p=90821
http://blogs.msdn.com/b/oldnewthing/archive/2012/12/18/10378851.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx

2/6

128 special-purpose registers, not all of which have been given meanings. These are

called “application registers” (ar) for some reason. I will cover selected register as they

arise during the discussion.

Other miscellaneous registers we will not cover in this series.

Some of these registers are further subdivided into categories like static, stacked, and

rotating.

Note that if you want to retrieve the value of a register with the Windows debugging engine,

you need to prefix it with an at-sign. For example ? @r32 will print the contents of the r32

register. If you omit the at-sign, then the debugger will look for a variable called r32.

A notational note: I am using the register names assigned by the Windows debugging engine.

The formal names for the registers are gr# for integer registers, fr# for floating point

registers, pr# for predicate registers, and br# for branch registers.

Static, stacked, and rotating registers

These terms describe how the registers participate in register renumbering.

Static registers are never renumbered.

Stacked registers are pushed onto a register stack when control transfers into a function, and

they pop off the register stack when control transfers out. We’ll see more about this when we

study the calling convention.

Rotating registers can be cyclically renumbered during the execution of a function. They

revert to being stacked when the function ends (and are then popped off the register stack).

We’ll see more about this when we study register rotation.

Integer registers

Of the 128 integer registers, registers r0 through r31 are static, and r32 through r127 are

stacked (but they can be converted to rotating).

Of the static registers, Win32 assigns them the following mnemonics which correspond to

their use in the Win32 calling convention.

Register Mnemonic Meaning

r0 Reads as zero (writes will fault)

r1 gp Global pointer

r8…r11 ret0…ret3 Return values

3/6

r12 sp Stack pointer

r13 TEB

Registers r4 through r7 are preserved across function calls. Well, okay, you should also

preserve the stack pointer and the TEB if you know what’s good for you, and there are special

rules for gp which we will discuss later. The other static variables are scratch (may be

modified by the function).

Register r0 is a register that always contains the value zero. Writes to r0 trigger a processor

exception.

The gp register points to the current function’s global variables. The Itanium has no absolute

addressing mode. In order to access a global variable, you need to load it indirectly through a

register, and the gp register points to the global variables associated with the current

function. The gp register is kept up to date when code transfers between DLLs by means we’ll

discuss later. (This is sort of a throwback to the old days of MAKEPROCINSTANCE .)

Every integer register contains 64 value bits and one trap bit, known as not-a-thing, or NaT.

The NaT bit is used by speculative execution to indicate that the register values are not valid.

We learned a little about NaT some time ago; we’ll discuss it further when we reach the topic

of control speculation. The important thing to know about NaT right now is that if you take a

register which is tagged as NaT and try to do arithmetic with it, then the NaT bit is set on the

output register. Most other operations on registers tagged as NaT will raise an exception.

The NaT bit means that accessing an uninitialized variable can crash.

void bad_idea(int *p)

{

int uninitialized;

*p = uninitialized; // can crash here!

}

Since the variable uninitialized is uninitialized, the register assigned to it might happen to

have the NaT bit set, left over from previous execution, at which point trying to save it into

memory raises an exception.

You may have noticed that there are four return value registers, which means that you can

return up to 32 bytes of data in registers.

Floating point registers

Register Meaning

http://blogs.msdn.com/b/oldnewthing/archive/2004/01/19/60162.aspx

4/6

f0 Reads as 0.0 (writes will fault)

f1 Reads as 1.0 (writes will fault)

Registers f0 through f31 are static, and f32 through f127 are rotating.

By convention, registers f0 through f5 and f16 through f31 are preserved across calls. The

others are scratch.

That’s about all I’m going to say about floating point registers, since they aren’t really where

the Itanium architecture is exciting.

Predicate registers

Instead of a flags register, the Itanium records the state of previous comparison operations in

dedicated registers known as predicates. Each comparison operation indicates which

predicates should hold the comparison result, and future instructions can test the predicate.

Register Meaning

p0 Reads as true (writes are ignored)

Predicate registers p0 through p15 are static, and p16 through p63 are rotating.

You can predicate almost any instruction, and the instruction will execute only if the

predicate register is true. For example:

(p1) add ret0 = r32, r33

means, “If predicate p1 is true, then set register ret0 equal to the sum of r32 and r33. If not,

then do nothing.” The thing inside the parentheses is called the qualifying predicate

(abbreviated qp).

Instructions which execute unconditionally are internally represented as being conditional

upon predicate register p0, since that register is always true.

Actually, I lied when I said that the instruction will execute only if the qualifying predicate is

true. There is one class of instructions which execute regardless of the state of the qualifying

predicate; more on that later.

The Win32 calling convention specifies that predicate registers p0 through p5 are preserved

across calls, and p6 through p63 are scratch.

5/6

There is a special pseudo-register called preds by the Windows debugging engine which

consists of the 64 predicate registers combined into a single 64-bit value. This pseudo-

register is used when code needs to save and restore the state of the predicate registers.

Branch registers

The branch registers are used for indirect jump instructions. The only things you can do with

branch registers are load them from an integer register, copy them to an integer register, and

jump to them. In particular, you cannot load them directly from memory or do arithmetic on

them. If you want to do any of those things, you need to do it with an integer register, then

transfer it to a branch register.

The Win32 calling convention assigns the following meanings to the branch registers:

Register Mnemonic Meaning

b0 rp Return address

The return address register is sometimes called br, but the disassembler calls it rp, so that’s

what we’ll call it.

The return address register is set automatically by the processor when a br.call

instruction is executed.

By convention, registers b1 through b5 are preserved across calls, while b6 and b7 are

scratch. (Exercise: Is b0 preserved across calls?)

Application registers

There are a large number of application registers, most of which are not useful to user-mode

code. We’ll introduce the interesting ones as they arise. I’ve already mentioned one of them

already: bsp is the ia64’s second stack pointer.

Break

Okay, this was a whirlwind tour of the Itanium register set. I bet your head hurts already, and

we haven’t even started coding yet!

In fact, we’re not going to be coding for quite some time. Next time, we’ll look at the

instruction format.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2005/04/21/410397.aspx
https://blogs.msdn.microsoft.com/oldnewthing/20150728-00/?p=90811
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

6/6

