
1/3

July 22, 2015

When you think you found a problem with a function,
make sure you’re actually calling the function, episode 2

devblogs.microsoft.com/oldnewthing/20150722-00

Raymond Chen

A customer reported that the DuplicateHandle function was failing with

ERROR_INVALID_HANDLE even though the handle being passed to it seemed legitimate:

 // Create the handle here

 m_Event =

 ::CreateEvent(NULL, FALSE/*bManualReset*/,

 FALSE/*bInitialState*/, NULL/*lpName*/));

 ... error checking removed ...

// Duplicate it here

HRESULT MyClass::CopyTheHandle(HANDLE *pEvent)

{

HRESULT hr = S_OK;

if (m_Event != NULL) {

 BOOL result = ::DuplicateHandle(

 GetCurrentProcess(),

 m_Event,

 GetCurrentProcess(),

 pEvent,

 0,

 FALSE,

 DUPLICATE_SAME_ACCESS

);

 if (!result) {

 // always fails with ERROR_INVALID_HANDLE

 return HRESULT_FROM_WIN32(GetLastError());

 }

} else {

 *pEvent = NULL;

}

return hr;

}

https://devblogs.microsoft.com/oldnewthing/20150722-00/?p=90851

2/3

The handle in m_Event appears to be valid. It is non-null, and we can still set and reset it.

But we can’t duplicate it.

Now, before claiming that a function doesn’t work, you should check what you’re passing to it

and what it returns. The customer checked the m_Event parameter, but what about the

other parameters? The function takes three handle parameters, after all, and they checked

only one of them. According to the debugger, DuplicateHandle was called with the

parameters

hSourceProcessHandle = 0x0aa15b80

hSourceHandle = 0x00000ed8 ← m_Event , appears to be valid

hTargetProcessHandle = 0x0aa15b80

lpTargetHandle = 0x00b0d914

dwDesiredAccess = 0x00000000

bInheritHandle = 0x00000000

dwOptions = 0x00000002

Upon sharing this information, the customer immediately saw the problem: The other two

handle parameters come from the GetCurrentProcess function, and that function was

returning 0x0aa15b80 rather than the expected pseudo-handle (which is currently -1 , but

that is not contractual).

The customer explained that their MyClass has a method with the name GetCurrent‐

Process , and it was that method which was being called rather than the Win32 function

GetCurrentProcess . They left off the leading :: and ended up calling the wrong Get‐

CurrentProcess .

By default, Visual Studio colors member functions and global functions the same, but you can

change this in the Fonts and Colors options dialog. Under Show settings for, select Text

Editor, and then under Display items you can customize the colors to use for various

language elements. In particular, you can choose a special color for static and instance

member functions.

Or, as a matter of style, you could have a policy of not giving member functions the same

name as global functions. (This has the bonus benefit of reducing false positives when

grepping.)

Bonus story: A different customer reported a problem with visual styles in the common tab

control. After a few rounds of asking questions, coming up with theories, testing the theories,

disproving the theories, the customer wrote back: “We figured out what was happening when

http://blogs.msdn.com/b/oldnewthing/archive/2014/08/01/10546597.aspx
http://msdn.microsoft.com/en-us/library/vstudio/kw7t0545%28v=vs.110%29.aspx

3/3

we tried to step into the call to CreateDialogIndirectParamW . Someone else in our code

base redefined all the dialog creation functions in an attempt to enforce a standard font on all

of them, but in doing so, they effectively made our code no longer isolation aware, because in

the overriding routines, they called CreateDialogIndirectParamW instead of Isolation‐

AawreCreateDialogIndirectParamW . Thanks for all the help, and apologies for the false

alarm.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

