
1/3

June 29, 2015

Parsing a string as a 64-bit integer, somehow
devblogs.microsoft.com/oldnewthing/20150629-00

Raymond Chen

Today’s Little Program takes a string and tries to parse it as a 64-bit integer in formats that a

programmer would likely encounter.

Here’s a first stab:

using System;

using System.Globalization;

class Program

{

static long ParseLongSomehow(string s)

{
 if (s.StartsWith("0x", StringComparison.OrdinalIgnoreCase)) {

 return long.Parse(s.Substring(2), NumberStyles.HexNumber);

 } else {

 return long.Parse(s);

 }

}

public static void Main(string[] args)

{
 long value = ParseLongSomehow(args[0]);

 Console.WriteLine(value);

 Console.WriteLine("0x{0:X}", value);

}
}

If the string begins with 0x , then we treat the rest of the argument as a hex value;

otherwise, we treat it as a decimal value.

Unfortunately, this doesn’t work if the input is 9223372036854775808 , which is the value of

1 << 63 , a value that is representable as a 64-bit unsigned value but not a 64-bit signed

value.

Our problem statement was pretty vague, so let’s write a functional specification. It helps to

know what problem you’re solving before you start to solve it. Otherwise, you’re just flailing

around writing code before you have a plan. When I tried to solve this problem, I flailed

https://devblogs.microsoft.com/oldnewthing/20150629-00/?p=45271
http://blogs.msdn.com/b/ericlippert/archive/2009/11/19/always-write-a-spec-part-one.aspx
http://ericlippert.com/2014/03/05/how-to-debug-small-programs/

2/3

around a bit until I realized that I didn’t have a spec.

What formats would a programmer be likely to encounter as the string representation of a

64-bit integer?

0x1234 : 64-bit number in hex format, case-insensitive. The value can range from 0 to

UInt64.MaxValue .

12345 : 64-bit unsigned number in decimal format. The value can range from 0 to

UInt64.MaxValue .

-12345 : 64-bit signed number in decimal format. The value can range from

Int64.MinValue to Int64.MaxValue .

Other formats may be permitted, but you need to support at least the above.

Writing down exactly what I was doing and what I wasn’t doing was the part that solved my

flailing. I had been worrying about things like -0x12345 and -9223372036854775809 and

9999999999999999999 , even though those numbers would not be something a

programmer would be likely to encounter.

From the specification we can develop our algorithm.

If the string begins with 0x , then parse what’s left as an unsigned 64-bit hexadecimal

number.

If the string begins with a minus sign, then parse it as a 64-bit signed number in

decimal format.

If the string does not begin with a minus sign, then parse it as a 64-bit unsigned

number in decimal format.

And that is pretty easy to implement.

static long ParseLongSomehow(string s)

{
 if (s.StartsWith("0x", StringComparison.OrdinalIgnoreCase)) {

 return long.Parse(s.Substring(2), NumberStyles.HexNumber);

 } else if (s[0] == '-') {

 return long.Parse(s);

 } else {

 return (long)ulong.Parse(s);

 }

}

Note that we are a little sloppy with our treatment of whitespace. We accept leading and

trailing spaces on decimal values, and allow trailing spaces on hex values (and even allow

spaces between the 0x and the first hex digit). That’s okay, because the spec allows us to

accept formats beyond the ones listed.

3/3

Now, for bonus points, let’s revise the functional specification a little bit, specifically by

adding another case:

0x12`3456789A : 64-bit number in hex format, case-insensitive, with backtick

separating the upper 32 bits from the lower 32 bits.

This is the format used by the Windows debugger engine.

static long ParseLongSomehow(string s)

{
 if (s.StartsWith("0x", StringComparison.OrdinalIgnoreCase)) {

 return long.Parse(s.Substring(2).Replace("`", ""), NumberStyles.HexNumber);

 } else if (s[0] == '-') {

 return long.Parse(s);

 } else {

 return (long)ulong.Parse(s);

 }

}

We’ll leave it here for now. Next time, we’ll start putting some blocks together.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

