
1/2

June 18, 2015

How come the technique for launching an unelevated
process from an elevated process doesn’t work?

devblogs.microsoft.com/oldnewthing/20150618-00

Raymond Chen

A customer was following the Execute in Explorer sample to launch an unelevated process

from an elevated process. (A sample which I rehashed some time ago.) The customer

reported that the resulting process was still elevated.

Upon closer inspection, the customer had disabled User Account Control (UAC).

If UAC is disabled, then the ability for an administrative user to launch an unelevated process

no longer exists.

Since people like tables, here are some tables.

In the classical world without UAC, administrators are administrators, and standard users

are standard users. In other words, processes run by administrators are always elevated, and

processes run by standard users are always non-elevated.

UAC disabled

User type

Process type

Elevated Non-elevated

Administrator ●

Standard ●

UAC added a new option to the table: The administrator who voluntarily relinquishes

administrative privilege and runs a process non-elevated.

UAC enabled

User type Process type

https://devblogs.microsoft.com/oldnewthing/20150618-00/?p=45351
http://msdn.microsoft.com/library/dd940355
http://blogs.msdn.com/b/oldnewthing/archive/2013/11/18/10468726.aspx


2/2

Elevated Non-elevated

Administrator ● ★

Standard ●

In words: In the classic non-UAC world, an administrative user can run processes elevated,

and a standard user can run processes un-elevated. If UAC is enabled, then a new

combination becomes available: An administrative user can run a process non-elevated.

If you disable UAC, then you are back in the classic world, where there is no such thing as an

administrative user running a non-elevated process. It’s therefore no surprise that when you

try to run the process unelevated, it still runs elevated.

You can look at this issue another way: If UAC is disabled, then Explorer runs elevated. And

therefore, if you ask Explorer to run a process, that process runs elevated too.

It turns out that the customer turned off UAC because they didn’t want to see any UAC

prompts; they wanted their program to elevate silently, yet launch child processes

unelevated. From a security-theoretical point of view, this is not an interesting configuration:

If you allow silent elevation, then those child processes can just silently elevate themselves,

and your attempt to run them unelevated accomplished nothing.

If you disable UAC, then the only way to get both elevated processes and unelevated

processes is to run the elevated processes as one user (an administrator) and the unelevated

processes as another user (a standard user).

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

