
1/2

May 14, 2015

Low-level hooks have thread affinity, so make sure you
keep an eye on the thread

devblogs.microsoft.com/oldnewthing/20150514-00

Raymond Chen

A customer was having a problem with their automated testing tool.

We have an automation testing tool that, among other things, installs a low-level mouse hook.
Sometimes, the hook takes too long to process an action, and it gets unhooked. We have a
watchdog thread that tries to detect when this has happened, and in response, it kicks off a task
on the thread pool to re-register the low-level hook. The call to register the low-level hook
succeeds, but the hook apparently didn’t get installed correctly because it never fires. What are
we doing wrong?

Recall that low-level hooks have thread affinity. This is spelled out in the documentation.

This hook is called in the context of the thread that installed it. The call is made by sending a
message to the thread that installed the hook. Therefore, the thread that installed the hook must
have a message loop.

So there are two mistakes here.

First, the hook is installed from a thread pool task, which means that the hook is associated

with the thread pool thread. One of the characteristics of the thread pool is that threads come

and go based on demand. If there is no thread pool activity for a while, the thread pool will

probably start trimming threads, and it it decides to get rid of the thread that installed the

hook, and the hook disappears with it.

The second mistake is that the hook is installed from a thread pool task. Sure, the hook

registers successfully, but then when you return back to the thread pool, there’s no guarantee

that anybody on that thread is going to pump messages any time soon.

Indeed, odds are that it won’t.

Tasks queued up on the thread pool tend not to be UI tasks, because, well, they’re on the

thread pool, not the UI thread. Therefore, there is no expectation that they will pump

messages. Furthermore, if the thread goes idle, the thread pool is probably not going to pump

https://devblogs.microsoft.com/oldnewthing/20150514-00/?p=45601
http://blogs.msdn.com/b/oldnewthing/archive/2005/04/25/411741.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644986%28v=vs.85%29.aspx


2/2

messages; it’s just going to put the thread to sleep until the next task is queued up.

The customer thanked us for the explanation. I’m not sure what they are going to do about it,

but I hope they’re going to solve their problem not by patching up their watchdog thread but

rather by fixing their low-level mouse hook so it doesn’t exceeed the low-level hook timeout.

For example, they could have the low-level hook post its events to another thread, then

return immediately. That other thread can then do the expensive processing asynchronously.

(This assumes that they are using the low-level hook only for monitoring the mouse rather

than trying to intercept and block it.)

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

