
1/1

April 23, 2015

How did the scopes for the CryptProtectMemory function
end up in a strange order?

devblogs.microsoft.com/oldnewthing/20150423-00

Raymond Chen

A few weeks ago, I left an exercise: Propose a theory as to why the names and values of the

scopes for the CryptProtectMemory function are the way they are.

I didn’t know the answer when I posed the exercise, but I went back and dug into it.

The CryptProtectMemory function started out as an internal function back in Windows

2000, and when originally introduced, there were only two scopes: Within a process and

cross-process. The Flags parameter therefore defined only a single bit, leaving the other bits

reserved (must be zero). If the bottom bit was clear, then the memory was protected within a

process; if the bottom bit was set, then the memory was protected across processes.

Later, the team realized that they needed to add a third scope, the one that corresponds to

CRYPTPROTECT_SAME_LOGON . They didn’t want to make a breaking change for existing

callers, but they saw that they could retarget what used to be a Flags parameter as an Options

parameter, and they added the new scope as a third option.

The numeric values remained unchanged, which meant that the new function was backward-

compatible with existing callers.

Bonus chatter: Commenter sense is correct that SAME_LOGON can be used by a service while

impersonating the client, however it is not the case that the scope can be larger when

impersonating a remote user. The memory block returned by the CryptProtectMemory

function can be decrypted only on the same machine that encrypted it, and only as long as

the machine has not been rebooted.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20150423-00/?p=44173
http://blogs.msdn.com/b/oldnewthing/archive/2015/04/13/10607036.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2015/04/13/10607036.aspx#10607280
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

