
1/3

April 6, 2015

Opening the classic folder browser dialog with a specific
folder preselected

devblogs.microsoft.com/oldnewthing/20150406-00

Raymond Chen

Today’s Little Program shows how to set the initial selection in the SHBrowseForFolder

dialog.

The design of the SHBrowseForFolder function had a defect: The BROWSEINFO structure

doesn’t have a cbSize member at the start. This means that the structure cannot ever

change because the function would have no way of knowing whether you are calling with the

old structure or the new one. If it weren’t for this defect, setting the initial selection would

have been easy: Add a pidlInitialSelection member to the structure and have people

fill it in.

Alas, any new functionality in the SHBrowseForFolder function therefore requires that the

new functionality be expressed within the constraints of the existing structure.

Fortunately, there’s a callback that takes a message number.

The workaround, therefore, is to express any new functionalty in the form of new callback

messages.

And that’s how the ability to set the initial selection in the folder browser dialog came about.

A new message BFFM_INITIALIZED was created, and in handling that message, the callback

can specify what it wants the selection to be.

https://devblogs.microsoft.com/oldnewthing/20150406-00/?p=44303
http://blogs.msdn.com/b/oldnewthing/archive/2003/12/12/56061.aspx

2/3

#define UNICODE

#define _UNICODE

#define STRICT_TYPED_ITEMIDS

#include <windows.h>

#include <ole2.h>

#include <oleauto.h>

#include <shlobj.h>

#include <stdio.h> // horrors! Mixing C and C++!

int CALLBACK Callback(

 HWND hwnd, UINT uMsg, LPARAM lParam, LPARAM lpData)

{

switch (uMsg) {

case BFFM_INITIALIZED:

 SendMessage(hwnd, BFFM_SETSELECTION, TRUE,

 reinterpret_cast<LPARAM>(L"C:\\Windows"));

 break;

}
return 0;

}

int __cdecl wmain(int, wchar_t **)

{

CCoInitialize init;

TCHAR szDisplayName[MAX_PATH];

BROWSEINFO info = { };

info.pszDisplayName = szDisplayName;

info.lpszTitle = TEXT("Pick a folder");

info.ulFlags = BIF_RETURNONLYFSDIRS;

info.lpfn = Callback;

PIDLIST_ABSOLUTE pidl = SHBrowseForFolder(&info);

if (pidl) {

 SHGetPathFromIDList(pidl, szDisplayName);

 wprintf(L"You chose %ls\n", szDisplayName);

 CoTaskMemFree(pidl);

}
return 0;

}

We initialize COM and then call the SHBrowseForFolder function with information that

includes a callback. The callback responds to the BFFM_INITIALIZED message by changing

the selection.

It’s not hard, but it’s a bit cumbersome.

Sorry.

Bonus chatter: The presence of the callback means that the function cannot shunt the work

to a new thread when called from an MTA thread because you are now stuck with the

problem of which thread the callback should run on.

http://blogs.msdn.com/b/oldnewthing/archive/2004/05/20/135841.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2014/08/11/10548975.aspx#10549125

3/3

The callback may want to access resources that belong to the original thread, so that

argues for the callback being run on the original thraed.

The callback may also want to access resources inside the dialog box, say in order to

customize it. That argues for the callback being run on the new thread.

You can’t have it both ways, so you’re stuck.

But it doesn’t really matter, because you shouldn’t be performing UI from a multi-threaded

apartment anyway. There’s not much point in making it easier for people to do the wrong

thing.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2008/04/24/8420242.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

