
1/2

March 25, 2015

What's the difference between PathIsSystemFolder and
Protected Operating System Files?

devblogs.microsoft.com/oldnewthing/20150325-00

Raymond Chen

The way to detect weird directories that should be excluded from the user interface is to

check for the FILE_ATTRIBUTE_HIDDEN and FILE_ATTRIBUTE_SYSTEM attributes being set

simultaneously. This is the mechanism used when you uncheck Hide protected operating

system files in the Folder Options dialog. (Programmatically, you detect whether the user

wants to see protected operating system files by checking the fShowSuperHidden member

of the SHELLSTATE structure.)
Michael Dunn suggested using PathIsSystemFolder to

detect these special directories, but that is not quite right.
 PathIsSystemFolder is for

marking a directory as “This directory has a nondefault UI behavior attached to it. Please

consult the desktop.ini file for more information.” You do this when your directory is,

say, the root of a namespace extension, or it has been subjected to folder customization.

Windows uses it to indicate that the directory has a localized name, as well as other funky

internal state.
There are two ways to mark a folder as having nondefault UI. One is to set the

FILE_ATTRIBUTE_READONLY attribute, and the other is to set the

FILE_ATTRIBUTE_SYSTEM attribute.
Either one works, and PathIsSystemFolder checks

for both, returning a nonzero value if either attribute is set.
In its default configuration,

Windows uses the read-only flag to mark folders with nondefault UI. However, some

applications mistakenly believe that if a directory is marked read-only, then files within the

directory cannot be modified. As a result, these applications refuse to let you save your

documents onto the desktop, for example. To work around this, you can use the UseSystem‐

ForSystemFolders to tell Windows to use the FILE_ATTRIBUTE_SYSTEM attribute instead.

Of course, if you do that, you will run into problems with applications which mistakenly

believe that if a directory is marked system, then the directory is inaccessible. So you get to

pick your poison.
Programmers who wish to mark a folder as having nondefault UI should

use the PathMakeSystemFolder function to set the appropriate attribute. That function

consults the system policy and sets the attribute that the policy indicates should be used to

mark folders with nondefault UI.

Going back to the original question, then: The difference between PathIsSystemFolder

and checking for folders that are marked hidden+system is that they check different things

and have different purposes.

https://devblogs.microsoft.com/oldnewthing/20150325-00/?p=44393
http://blogs.msdn.com/b/oldnewthing/archive/2008/09/19/8957958.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/04/19/409620.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2008/09/19/8957958.aspx#8959388
http://blogs.msdn.com/b/oldnewthing/archive/2003/09/30/55100.aspx

2/2

Function Test

PathIsSystemFolder ReadOnly or System

path is protected operating system folder Hidden and System

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

