
1/2

February 13, 2015

What is this inconsistent heap state that MSDN warns me
about during DLL_PROCESS_DETACH?

devblogs.microsoft.com/oldnewthing/20150213-00

Raymond Chen

In the MSDN documentation for the DllMain entry point, MSDN notes:

When handling DLL_PROCESS_DETACH, a DLL should free resources such as heap
memory only if the DLL is being unloaded dynamically (the lpReserved¹ parameter is NULL).
If the process is terminating (the lpvReserved parameter is non-NULL), all threads in the
process except the current thread either have exited already or have been explicitly terminated
by a call to the ExitProcess function, which might leave some process resources such as heaps
in an inconsistent state. In this case, it is not safe for the DLL to clean up the resources. Instead,
the DLL should allow the operating system to reclaim the memory.

A customer wanted to know, “What is this inconsistent heap state that MSDN is talking about

here?”

The information is actually right there in the sentence. “… explicitly terminated by a call to

the ExitProcess function, which might leave some process resources such as heaps in an

inconsistent state.”

When you see text that says “X might lead to Y,” then when you ask “What could lead to Y?”

you might consider that it is X.

Background reading: Quick overview of how processes exit on Windows XP, plus bonus
electrification of critical sections and slim reader/writer locks.

Okay, I’ll give the customer the benefit of the doubt and assume that the question was more

along the lines of “Why would termination by a call to the ExitProcess function lead to an

inconsistent state?”

Remember why TerminateThread is a horrible idea: It terminates the thread in the middle

of whatever it is doing, not giving it a chance to restore consistency or otherwise provide for

an orderly end to operations. The thread may have been in the middle of updating a data

https://devblogs.microsoft.com/oldnewthing/20150213-00/?p=44683
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682583(v=vs.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2007/05/03/2383346.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/01/22/9951750.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/10/07/10221348.aspx

2/2

structure, which usually involves perturbing an invariant, then re-establishing it. If it was

terminated before it could re-establish the invariant, you now have an inconsistent data

structure.

That’s the sort of inconsistency the paragraph is talking about. If one of the threads

terminated by ExitProcess was executing heap code at the moment it was terminated,

then the heap may be inconsistent because the thread never got a chance to re-establish

consistency. (The heap tries to detect that this has happened but all that does is transform

one failure mode into another. The failure is still there.)

Of course, the heap isn’t the only resource that suffers from this problem. Any resource that

is available to more than one thread is susceptible to this. It’s just that the heap is a very

popular shared resource, so it gets an extra mention in the documentation.

¹ Typo. Should be lpvReserved.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2009/11/13/9921676.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/01/06/10253727.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

