
1/3

February 5, 2015

The SuspendThread function suspends a thread, but it
does so asynchronously

devblogs.microsoft.com/oldnewthing/20150205-00

Raymond Chen

Prologue: Why you should never suspend a thread.

Okay, so a colleague decided to ignore that advice because he was running some experiments

with thread safety and interlocked operations, and suspending a thread was a convenient way

to open up race windows.

While running these experiments, he observed some strange behavior.

https://devblogs.microsoft.com/oldnewthing/20150205-00/?p=44743
http://blogs.msdn.com/b/oldnewthing/archive/2003/12/09/55988.aspx

2/3

LONG lValue;

DWORD CALLBACK IncrementerThread(void *)

{

while (1) {

 InterlockedIncrement(&lValue);

}
return 0;

}

// This is just a test app, so we will abort() if anything

// happens we don't like.

int __cdecl main(int, char **)

{

DWORD id;

HANDLE thread = CreateThread(NULL, 0, IncrementerThread, NULL, 0, &id);

if (thread == NULL) abort();

while (1) {

 if (SuspendThread(thread) == (DWORD)-1) abort();

 if (InterlockedOr(&lValue, 0) != InterlockedOr(&lValue, 0)) {

 printf("Huh? The variable lValue was modified by a suspended thread?\n");

 }

 ResumeThread(thread);

}
return 0;

}

The strange thing is that the “Huh?” message was being printed. How can a suspended

thread modify a variable? Is there some way that InterlockedIncrement can start

incrementing a variable, then get suspended, and somehow finish the increment later?

The answer is simpler than that. The SuspendThread function tells the scheduler to

suspend the thread but does not wait for an acknowledgment from the scheduler that the

suspension has actually occurred. This is sort of alluded to in the documentation for

SuspendThread which says

This function is primarily designed for use by debuggers. It is not intended to be used for thread
synchronization

You are not supposed to use SuspendThread to synchronize two threads because there is no

actual synchronization guarantee. What is happening is that the SuspendThread signals the

scheduler to suspend the thread and returns immediately. If the scheduler is busy doing

something else, it may not be able to handle the suspend request immediately, so the thread

being suspended gets to run on borrowed time until the scheduler gets around to processing

the suspend request, at which point it actually gets suspended.

http://msdn.microsoft.com/library/ms686345
http://channel9.msdn.com/shows/Going+Deep/Arun-Kishan-Farewell-to-the-Windows-Kernel-Dispatcher-Lock/

3/3

If you want to make sure the thread really is suspended, you need to perform a synchronous

operation that is dependent on the fact that the thread is suspended. This forces the suspend

request to be processed since it is a prerequisite for your operation, and since your operation

is synchronous, you know that by the time it returns, the suspend has definitely occurred.

The traditional way of doing this is to call GetThreadContext , since this requires the kernel

to read from the context of the suspended thread, which has as a prerequisite that the context

be saved in the first place, which has as a prerequisite that the thread be suspended.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

