
1/3

January 28, 2015

The compiler can make up its own calling conventions,
within limits

devblogs.microsoft.com/oldnewthing/20150128-00

Raymond Chen

A customer was confused by what they were seeing when debugging.

It is our understanding that the Windows x86-64 calling convention passes the first four
parameters in registers rcx , rdx , r8 , and r9 . But we’re seeing the parameters being
passed some other way. Given the function prototype

int LogFile::Open(wchar_t *path, LogFileInfo *info, bool verbose);

we would expect to see the parameters passed as

rcx = this
rdx = path
r8 = info
r9 = verbose

but instead we’re seeing this:

rax=0000000001399020 rbx=0000000003baf238 rcx=00000000013c3260

rdx=0000000003baf158 rsi=000000000139abf0 rdi=00000000013c3260

rip=00007ffd69b71724 rsp=0000000003baf038 rbp=0000000003baf0d1

r8=0000000001377870 r9=0000000000000000 r10=000000007fffffb9

r11=00007ffd69af08e8 r12=00000000013a3b80 r13=0000000000000000

r14=0000000001399010 r15=00000000013a3b90

contoso!LogFile::Open:

00007ffd`69b71724 fff3 push rbx

0:001> du @rdx // path should be in rdx

00000000`03baf158 "`"

0:001> du @r8 // but instead it's in r8

00000000`01377870 "C:\Logs\Contoso.txt"

Is our understanding of the calling convention incomplete?

There are three parties to a calling convention.

1. The function doing the calling.

https://devblogs.microsoft.com/oldnewthing/20150128-00/?p=44813

2/3

2. The function being called.

3. The operating system.

The operating system needs to get involved if something unusual occurs, like an exception,

and it needs to go walking up the stack looking for a handler.

The catch is that if a compiler knows that it controls all the callers of a function, then it can

modify the calling convention as long as the modified convention still observes the operating

system rules. After all, the operating system doesn’t see your source code. As long as the

object code satisfies the calling convention rules, everything is fine. (This typically means

that the modification needs to respect unwind codes and stack usage.)

For example, suppose you had code like this:

extern void bar(int b, int a);

static void foo(int a, int b)

{

 return bar(b + 1, a);

}

int __cdecl main(int argc, char **argv)

{

foo(10, 20);

foo(30, 40);

return 0;

}

A clever compiler could make the following analysis: Since foo is a static function, it can be

called only from this file. And in this file, the address of the function is never taken, so the

compiler knows that it controls all the callers. Therefore, it optimizes the function foo by

rewriting it as

static void foo(int b, int a)

{

 return bar(b + 1, a);

}

It makes corresponding changes to main:

int __cdecl main(int argc, char *argv)

{

foo(20, 10); // flip the parameters

foo(40, 30); // flip the parameters

return 0;

}

By doing this, the compiler can generate the code for foo like this:

3/3

foo:

 inc ecx

 jmp bar

rather than the more conventional

foo:

 mov eax, edx

 inc eax

 mov ecx, edx

 mov edx, eax

 jmp bar

You can look at this transformation in one of two ways. You can say, “The compiler rewrote

my function prototype to be more efficient.” Or you can say, “The compiler is using a custom

calling convention for foo which passes the parameters in reverse order.”

Both interpretations are just two ways of viewing the same thing.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

