
1/3

December 29, 2014

Integer signum in SSE
devblogs.microsoft.com/oldnewthing/20141229-00

Raymond Chen

The signum function is defined as follows:

signum(x) = −1 if x < 0

signum(x) = 0 if x = 0

signum(x) = +1 if x > 0

There are a couple of ways of calculating this in SSE integers.

One way is to convert the C idiom

int signum(int x) { return (x > 0) - (x < 0); }

The SSE translation of this is mostly straightforward.
The quirk is that the SSE comparison

functions return −1
to indicate true ,
whereas C uses +1 to represent true .
But this is easy

to take into account:

x > 0 ⇔ − pcmpgt(x, 0)

x < 0 ⇔ − pcmpgt(0, x)

Substituting this into the original signum function,
we get

signum(x) = (x > 0) − (x < 0)

= − pcmpgt(x, 0) − − pcmpgt(0, x)

= − pcmpgt(x, 0) + pcmpgt(0, x)

= pcmpgt(0, x) − pcmpgt(x, 0)

https://devblogs.microsoft.com/oldnewthing/20141229-00/?p=43283

2/3

In assembly:

 ; assume x is in xmm0

 pxor xmm1, xmm1

 pxor xmm2, xmm2

 pcmpgtw xmm1, xmm0 ; xmm1 = pcmpgt(0, x)

 pcmpgtw xmm0, xmm2 ; xmm0 = pcmpgt(x, 0)

 psubw xmm0, xmm1 ; xmm0 = signum

 ; answer is in xmm0

With intrinsics:

__m128i signum16(__m128i x)

{

 return _mm_sub_epi16(_mm_cmpgt_epi16(_mm_setzero_si128(), x),

 _mm_cmpgt_epi16(x, _mm_setzero_si128()));

}

This pattern extends mutatus mutandis to
 signum8 ,
 signum32 ,
and
 signum64 .

Another solution is to use the signed minimum and maximum opcodes,
using the formula

signum(x) = min(max(x, −1), +1)

In assembly:

 ; assume x is in xmm0

 pcmpgtw xmm1, xmm1 ; xmm1 = -1 in all lanes

 pmaxsw xmm0, xmm1

 psrlw xmm1, 15 ; xmm1 = +1 in all lanes

 pminsw xmm0, xmm1

 ; answer is in xmm0

With intrinsics:

__m128i signum16(__m128i x)

{

 // alternatively: minusones = _mm_set1_epi16(-1);

 __m128i minusones = _mm_cmpeq_epi16(_mm_setzero_si128(),

 _mm_setzero_si128());

 x = _mm_max_epi16(x, minusones);

 // alternatively: ones = _mm_set1_epi16(1);

 __m128i ones = _mm_srl_epi16(minusones, 15);

 x = _mm_min_epi16(x, ones);

 return x;

}

http://blogs.msdn.com/b/oldnewthing/archive/2014/12/15/10580665.aspx

3/3

The catch here is that
SSE2 supports only 16-bit signed minimum and maximum;
to get other

bit sizes, you need to bump up to SSE4.
But if you’re going to do that, you may as well use the

psign instruction.
In assembly:

 ; assume x is in xmm0

 pcmpgtw xmm1, xmm1 ; xmm1 = -1 in all lanes

 psrlw xmm1, 15 ; xmm1 = +1 in all lanes

 psignw xmm1, xmm0 ; apply sign of x to xmm1

 ; answer is in xmm1

With intrinsics:

__m128i signum16(__m128i x)

{

 // alternatively: ones = _mm_set1_epi16(1);

 __m128i minusones = _mm_cmpeq_epi16(_mm_setzero_si128(),

 _mm_setzero_si128());

 __m128i ones = _mm_srl_epi16(minusones, 15);

 return _mm_sign_epi16(ones, x);

}

The psign instruction applies the sign of its second
argument to its first argument.
We load

up the first argument
with the value +1 in all lanes,
then apply the sign of x,
which negates

the value if the corresponding lane of x
is negative;
sets the value to zero if the lane is zero,

and leaves it alone if the corresponding lane is positive.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2014/12/15/10580665.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

