
1/2

December 19, 2014

How did protected-mode 16-bit Windows fix up jumps to
functions that got discarded?

devblogs.microsoft.com/oldnewthing/20141219-00

Raymond Chen

Commenter Neil presumes that
Windows 286 and later simply fixed up the movable entry

table with
jmp selector:offset instructions once and for all.

It could have, but it went one step further.

Recall that the point of the movable entry table is to provide
a fixed location that always

refers to a specific function,
no matter where that function happens to be.
This was necessary

because real mode has no memory manager.

But protected mode does have a memory manager.
Why not let the memory manager do the

work?
That is, after all, its job.

In protected-mode 16-bit Windows, the movable entry
table was ignored.
When one piece of

code needed to reference another piece of code,
it simply jumped to or called it
by its

selector:offset.

 push ax

 call 0987:6543

(Exercise: Why didn’t I use
 call 1234:5678 as the sample address?)

The selector was patched directly into the code as part of
fixups.
(We saw this
several years

ago
in another context.)

When a segment is relocated in memory,
there is no stack walking to
patch up return

addresses
to point to thunks,
and no
editing of the movable entry points
to point to the
new

location.
All that happens is that the base address in the
descriptor table entry for the selector

is updated to
point to the new linear address of the segment.
And when a segment is

discarded,
the descriptor table entry is marked not present,
so that any future reference to it

will raise a
selector not present exception,
which the kernel handles by reloading the selector.

https://devblogs.microsoft.com/oldnewthing/20141219-00/?p=43343
http://blogs.msdn.com/b/oldnewthing/archive/2012/06/22/10322767.aspx#10323211
http://blogs.msdn.com/b/oldnewthing/archive/2006/07/17/668284.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/06/29/10325295.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/06/22/10322767.aspx

2/2

Things are a lot easier when you have a memory manager around.
A lot of the head-exploding

engineering in real-mode windows was in
all the work of
simulating a memory manager on a

CPU that didn’t have one!

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

