
1/3

December 5, 2014

Killing a window timer prevents the WM_TIMER message
from being generated for that timer, but it doesn't
retroactively remove ones that were already generated

devblogs.microsoft.com/oldnewthing/20141205-00

Raymond Chen

Calling
 KillTimer
to cancel a window timer
prevents WM_TIMER messages from being

generated for that timer,
even if one is overdue.
In other words,
give this sequence of

operations:

SetTimer(hwnd, IDT_MYTIMER, 1000, NULL);

Sleep(2000);

KillTimer(hwnd, IDT_MYTIMER);

no WM_TIMER message is ever generated.
Even though a timer became due during the

Sleep ,
no timer message was generated during the sleep
because timer messages are

generated on demand,
and nobody demanded one.
Killing the timer then removes the ability

to demand a timer
message,
and the result is that no message ever appears.

In general, this means that
once you kill a timer,
you will not receive any WM_TIMER messages

for that timer.

Unless you
demanded one while the timer was active and didn’t process it.

Let’s try a variation:

SetTimer(hwnd, IDT_MYTIMER, 1000, NULL);

Sleep(2000);

if (PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, 0)) {

DispatchMessage(&msg);

}

KillTimer(hwnd, IDT_MYTIMER);

In this case, the PeekMessage function
looks for a WM_TIMER message in the queue,
and if

none is found, it asks for one to be generated on the fly
if a timer is due.
It so happens that

one is due (IDT_MYTIMER),
so the PeekMessage causes a
 WM_TIMER to be generated and

placed in the queue.
But it doesn’t remain in this state for long, because
the message is

removed from the queue by the
 PeekMessage function.

https://devblogs.microsoft.com/oldnewthing/20141205-00/?p=43463
http://blogs.msdn.com/b/oldnewthing/archive/2014/12/04/10577881.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/05/23/10420741.aspx

2/3

Okay, now let’s make things weird:

SetTimer(hwnd, IDT_MYTIMER, 1000, NULL);

Sleep(2000);

if (PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_NOREMOVE)) {

// oh hey there is an overdue timer, how about that

}

KillTimer(hwnd, IDT_MYTIMER);

This time, we passed the
 PM_NOREMOVE flag.
The window manager goes through the same

process as before,
first looking for a WM_TIMER message in the queue,
and then failing to

find one,
generates one on the fly since the IDT_MYTIMER
timer is overdue.
But the
 PM_NO‐

REMOVE flag makes things weird
because it says,
“Thanks for generating that message for me.

But don’t remove it from the queue.
Leave it there.
I’ll deal with it later.”

You might do this if you want to stop processing
if a timer elapses,
but you don’t want to

handle the timer immediately because you are in
some sensitive state at the point you realize

that you need to stop processing.
Instead, you want to return back out to the main message

loop and let it
deal with the timer.

BOOL DoWorkUntilTheNextTimer()

{

BOOL fFinished = FALSE;

MSG msg;

PrepareToDoWork();

while (!PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_NOREMOVE)) {

 if (AnyWorkLeft()) DoSomeWork();

 else { fFinished = TRUE; break; }

}
CleanUpAfterDoingWork();

return fFinished;

}

And then you might call it like this:

void DoWorkForUpToOneSecond()

{

SetTimer(hwnd, IDT_MYTIMER, 1000, NULL);

DoWorkUntilTheNextTimer();

KillTimer(hwnd, IDT_MYTIMER);

}

The
 KillTimer will prevent any new
timer messages from being generated for
 IDT_MY‐

TIMER ,
but it does not go back in time and retroactively
un-generate the timer message that

was generated
when
 DoWorkUntilTheNextTimer
asked to see if there were any timer

messages.

You are now in the strange situation where
a subsequent
call to PeekMessage or
 Get‐

Message
will retrieve a timer message for a timer that is no longer active!

3/3

This is captured in the MSDN documentation with the simple
sentence,
“The KillTimer

function does not remove
 WM_TIMER messages already posted to the message queue.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

