
1/9

December 1, 2014

Counting array elements which are below a particular
limit value using SSE

devblogs.microsoft.com/oldnewthing/20141201-00

Raymond Chen

Some time ago, we looked at
how doing something can be faster than not doing it.
That is, we

observed the non-classical effect of the branch predictor.
I took the branch out of the inner

loop,
but let’s see how much further I can push it.

The trick I’ll employ today is using SIMD in order to
operate on multiple pieces of data

simultaneously.
Take the original program and replace the
 countthem
function with this

one:

int countthem(int boundary)

{

__m128i xboundary = _mm_cvtsi32_si128(boundary);

__m128i count = _mm_setzero_si128();

for (int i = 0; i < 10000; i++) {

 __m128i value = _mm_cvtsi32_si128(array[i]);

 __m128i test = _mm_cmplt_epi32(value, xboundary);

 count = _mm_sub_epi32(count, test);

}
return _mm_cvtsi128_si32(count);

}

Now, this program doesn’t actually use any parallel operations,
but it’s our starting point.
For

each 32-bit value,
we load it,
compare it agains the boundary value,
and accumulate the

result.
The _mm_cmplt_epi32 function
compares the four 32-bit integers in the first

parameter
against the four 32-bit integers in the second parameter,
producing four new 32-

bit integers.
Each of the new 32-bit integers is 0xFFFFFFFF
if the corresponding first

parameter is less than the second,
or it is 0x00000000 if it is greater than or equal.

In this case, we loaded up the value we care about,
then compare it against the boundary

value.
The result of the comparison is either 32 bits of 0 (for false)
or 32 bits of 1 (for true),
so

this merely sets test equal to
 0xFFFFFFFF if the value is less than the boundary;

otherwise
 0x0000000 .
Since 0xFFFFFFFF is the same as a 32-bit -1 ,
we subtract the

value so that the count goes up by 1 if the
value is less than the boundary.

https://devblogs.microsoft.com/oldnewthing/20141201-00/?p=43503
http://blogs.msdn.com/b/oldnewthing/archive/2014/06/13/10533875.aspx

2/9

Finally, we convert back to a 32-bit integer
and return it.

With this change, the running time drops from 2938 time units
to 2709, an improvement of

8%.

So far,
we have been using only the bottom 32 bits of the 128-bit XMM registers.
Let's turn

on the parallelism.

int countthem(int boundary)

{

__m128i *xarray = (__m128i*)array;

__m128i xboundary = _mm_set1_epi32(boundary);

__m128i count = _mm_setzero_si128();

for (int i = 0; i < 10000 / 4; i++) {

 __m128i value = _mm_loadu_si128(&xarray[i]);

 __m128i test = _mm_cmplt_epi32(value, xboundary);

 count = _mm_sub_epi32(count, test);

}
__m128i shuffle1 = _mm_shuffle_epi32(count, _MM_SHUFFLE(1, 0, 3, 2));

count = _mm_add_epi32(count, shuffle1);

__m128i shuffle2 = _mm_shuffle_epi32(count, _MM_SHUFFLE(2, 3, 0, 1));

count = _mm_add_epi32(count, shuffle2);

return _mm_cvtsi128_si32(count);

}

We take our 32-bit integers and put them in groups of four,
so instead of thinking of them as

10000 32-bit integers,
we think of them as 2500 128-bit blocks,
each block containing four

lanes,
with each lane holding one 32-bit integers.

Lane 3 Lane 2 Lane 1 Lane 0

xarray[0] array[3] array[2] array[1] array[0]

xarray[1] array[7] array[6] array[5] array[4]

⋮ ⋮ ⋮ ⋮ ⋮

xarray[2499] array[9999] array[9998] array[9997] array[9996]

Now we can run our previous algorithm in parallel on each lane.

Lane 3 Lane 2 Lane 1 Lane 0

xboundary boundary boundary boundary boundary

3/9

test array[3] <
boundary

array[2] <
boundary

array[1] <
boundary

array[0] <
boundary

test array[7] <
boundary

array[6] <
boundary

array[5] <
boundary

array[4] <
boundary

⋮ ⋮ ⋮ ⋮ ⋮

test array[9999]
< boundary

array[9998]
< boundary

array[9997]
< boundary

array[9996]
< boundary

count = Σ
− test

Lane 3 totals Lane 2 totals Lane 1 totals Lane 0 totals

The xboundary variable contains
a copy of the boundary in each of the four 32-bit lanes.

We load the values from the array four at a time¹
and compare them (in parallel) against the

boundary,
then we tally them (in parallel).
The result of the loop is that each lane of count

performs a count of values for its lane.

After we complete the loop, we combine the parallel results
by adding the lanes together. We

do this by shuffling the values
around and performing more parallel adds.
The

_mm_shuffle_epi32 function lets you rearrange the
lanes of an XMM register.
The

_MM_SHUFFLE macro lets you specify how you
want the shuffle to occur.
For example,

_MM_SHUFFLE(1, 0, 3, 2)
says that we want lanes 1, 0, 3 then 2 of the original value.

(You can shuffle a value into multiple destination lanes;
for example,
 _MM_SHUFFLE(0, 0,

0, 0)
says that you want four copies of lane 0.
That's how we created xboundary .)

Lane 3 Lane 2 Lane 1 Lane 0

count Lane 3 totals Lane 2 totals Lane 1 totals Lane 0 totals

shuffle1 Lane 1 totals Lane 0 totals Lane 3 totals Lane 2 totals

count +=
shuffle1

Lane 3 + Lane
1

Lane 2 + Lane
0

Lane 1 + Lane
3

Lane 0 + Lane
2

shuffle2 Lane 2 + Lane
0

Lane 3 + Lane
1

Lane 0 + Lane
2

Lane 1 + Lane
3

4/9

count +=
shuffle2

Lane 3 + Lane
1 +

Lane 2 + Lane
0

Lane 2 + Lane
0 +

Lane 3 + Lane
1

Lane 1 + Lane
3 +

Lane 0 + Lane
2

Lane 0 + Lane
2 +

Lane 1 + Lane
3

At the end of the shuffling and adding,
we have calculated the sum of all
four lanes.
(For
style

points, I put the answer in all the lanes.)

This new version runs in 688 time units,
or 3.9 times faster than the previous one.
This

makes sense because we are counting four
values at each iteration.
The overall improvement

is 4.3×.

Let's see if we can reduce the loop overhead by
doing some unrolling.

#define GETVALUE(n) __m128i value##n = _mm_loadu_si128(&xarray[i+n])

#define GETTEST(n) __m128i test##n = _mm_cmplt_epi32(value##n, xboundary)

#define GETCOUNT(n) count = _mm_sub_epi32(count, test##n)

int countthem(int boundary)

{

__m128i *xarray = (__m128i*)array;

__m128i xboundary = _mm_set1_epi32(boundary);

__m128i count = _mm_setzero_si128();

for (int i = 0; i < 10000 / 4; i += 4) {

 GETVALUE(0); GETVALUE(1); GETVALUE(2); GETVALUE(3);

 GETTEST(0); GETTEST(1); GETTEST(2); GETTEST(3);

 GETCOUNT(0); GETCOUNT(1); GETCOUNT(2); GETCOUNT(3);

}
__m128i shuffle1 = _mm_shuffle_epi32(count, _MM_SHUFFLE(1, 0, 3, 2));

count = _mm_add_epi32(count, shuffle1);

__m128i shuffle2 = _mm_shuffle_epi32(count, _MM_SHUFFLE(2, 3, 0, 1));

count = _mm_add_epi32(count, shuffle2);

return _mm_cvtsi128_si32(count);

}

We unroll the loop fourfold.
At each iteration, we load 16 values from memory,
and then

accumulate the totals.
We fetch all the memory values first,
then do the comparisons,
then

accumulate the results.
If we had written it as
 GETVALUE immediately followed
by

GETTEST ,
then the _mm_cmplt_epi32
would have stalled waiting for the result
to arrive

from memory.
By interleaving the operations,
we get some work done instead of stalling.

This version runs in 514 time units,
an improvement of 33% over the previous version
and an

overall improvement of 5.7×.

Can we unroll even further?
Let's try fivefold.

http://blogs.msdn.com/b/oldnewthing/archive/2012/11/13/10367904.aspx

5/9

int countthem(int boundary)

{

__m128i *xarray = (__m128i*)array;

__m128i xboundary = _mm_set1_epi32(boundary);

__m128i count = _mm_setzero_si128();

for (int i = 0; i < 10000 / 4; i += 5) {

 GETVALUE(0); GETVALUE(1); GETVALUE(2); GETVALUE(3); GETVALUE(4);

 GETTEST(0); GETTEST(1); GETTEST(2); GETTEST(3); GETTEST(4);

 GETCOUNT(0); GETCOUNT(1); GETCOUNT(2); GETCOUNT(3); GETCOUNT(4);

}
__m128i shuffle1 = _mm_shuffle_epi32(count, _MM_SHUFFLE(1, 0, 3, 2));

count = _mm_add_epi32(count, shuffle1);

__m128i shuffle2 = _mm_shuffle_epi32(count, _MM_SHUFFLE(2, 3, 0, 1));

count = _mm_add_epi32(count, shuffle2);

return _mm_cvtsi128_si32(count);

}

Huh?
This version runs marginally slower,
at 528 time units.
So I guess further unrolling

won't help any more.
(For example, if you unroll a loop so much that
you have more live

variables than registers,
the compiler will need to spill registers to memory.
The x86 has

eight XMM registers available,
so you can easily cross that limit.)

But wait, there's still room for tweaking.
We have been using
 _mm_cmplt_epi32 to perform

the comparison,
expecting the compiler to generate code like this:

 ; suppose xboundary is in xmm0 and count is in xmm1

 movdqu xmm2, xarray[i] ; xmm2 = value

 pcmpltd xmm2, xmm0 ; xmm2 = test

 psubd xmm1, xmm2

If you crack open your Intel manual,
you'll see that there is no
 PCMPLTD instruction.
The

compiler intrinsic is emulating the instruction by
flipping the parameters and using

PCMPGTD .

_mm_cmplt_epi32(x, y) ↔ _mm_cmpgt_epi32(y, x)

But the PCMPGTD instruction writes the result
back into the first parameter.
In other words,

it always takes the form

y = _mm_cmpgt_epi32(y, x);

In our case, y is xboundary ,
but we don't want to modify xboundary .
As a result, the

compiler needs to introduce a temporary register:

 movdqu xmm2, xarray[i] ; xmm2 = value

 movdqa xmm3, xmm0 ; xmm3 = copy of xboundary

 pcmpgtd xmm3, xmm2 ; xmm3 = test

 psubd xmm1, xmm3

6/9

We can take an instruction out of the sequence by switching to
 _mm_cmpgt_epi32 and

adjusting our logic accordingly,
taking advantage of the fact that

x < y ⇔ ¬(x ≥ y) ⇔ ¬(x > y − 1)

assuming the subtraction does not underflow.
Fortunately, it doesn't in our case since

boundary
ranges from 0 to 10, and subtracting 1 does not put us in any danger
of integer

underflow.

With this rewrite, we can switch to using
 _mm_cmpgt_epi32 ,
which is more efficient for our

particular scenario.
Since we are now counting the values which don't
meet our criteria,
we

need to take our final result and subtract it from 10000.

#define GETTEST(n) __m128i test##n = _mm_cmpgt_epi32(value##n, xboundary1)

int countthem(int boundary)

{

__m128i *xarray = (__m128i*)array;

__m128i xboundary1 = _mm_set1_epi32(boundary - 1);

__m128i count = _mm_setzero_si128();

for (int i = 0; i < 10000 / 4; i += 5) {

 GETVALUE(0); GETVALUE(1); GETVALUE(2); GETVALUE(3); GETVALUE(4);

 GETTEST(0); GETTEST(1); GETTEST(2); GETTEST(3); GETTEST(4);

 GETCOUNT(0); GETCOUNT(1); GETCOUNT(2); GETCOUNT(3); GETCOUNT(4);

}
__m128i shuffle1 = _mm_shuffle_epi32(count, _MM_SHUFFLE(1, 0, 3, 2));

count = _mm_add_epi32(count, shuffle1);

__m128i shuffle2 = _mm_shuffle_epi32(count, _MM_SHUFFLE(2, 3, 0, 1));

count = _mm_add_epi32(count, shuffle2);

return 10000 - _mm_cvtsi128_si32(count);

}

Notice that we have two subtractions which cancel out.
We are subtracting the result of the

comparison, and then
we subtract the total from 10000.
The two signs cancel out, and we can

use addition for both.
This saves an instruction in the return because
subtraction is not

commutative, but addition is.

7/9

#define GETCOUNT(n) count = _mm_add_epi32(count, test##n)

int countthem(int boundary)

{

__m128i *xarray = (__m128i*)array;

__m128i xboundary1 = _mm_set1_epi32(boundary - 1);

__m128i count = _mm_setzero_si128();

for (int i = 0; i < 10000 / 4; i += 5) {

 GETVALUE(0); GETVALUE(1); GETVALUE(2); GETVALUE(3); GETVALUE(4);

 GETTEST(0); GETTEST(1); GETTEST(2); GETTEST(3); GETTEST(4);

 GETCOUNT(0); GETCOUNT(1); GETCOUNT(2); GETCOUNT(3); GETCOUNT(4);

}
__m128i shuffle1 = _mm_shuffle_epi32(count, _MM_SHUFFLE(1, 0, 3, 2));

count = _mm_add_epi32(count, shuffle1);

__m128i shuffle2 = _mm_shuffle_epi32(count, _MM_SHUFFLE(2, 3, 0, 1));

count = _mm_add_epi32(count, shuffle2);

return 10000 + _mm_cvtsi128_si32(count);

}

You can look at the transformation this way:
The old code considered the glass half empty.
It

started with zero and added 1 each time it found an entry
that passed the test.
The new code

considers the glass half full.
It assumes each entry passes the test,
and it subtracts one each

time it finds an element that fails the test.

This version runs in 453 time units,
an improvement of 13% over the fourfold unrolled

version
and an improvement of 6.5× overall.

Okay, let's unroll sixfold, just for fun.

8/9

int countthem(int boundary)

{

__m128i *xarray = (__m128i*)array;

__m128i xboundary = _mm_set1_epi32(boundary - 1);

__m128i count = _mm_setzero_si128();

int i = 0;

{
 GETVALUE(0); GETVALUE(1); GETVALUE(2); GETVALUE(3);

 GETTEST(0); GETTEST(1); GETTEST(2); GETTEST(3);

 GETCOUNT(0); GETCOUNT(1); GETCOUNT(2); GETCOUNT(3);

}
i += 4;

for (; i < 10000 / 4; i += 6) {

 GETVALUE(0); GETVALUE(1); GETVALUE(2);

 GETVALUE(3); GETVALUE(4); GETVALUE(5);

 GETTEST(0); GETTEST(1); GETTEST(2);

 GETTEST(3); GETTEST(4); GETTEST(5);

 GETCOUNT(0); GETCOUNT(1); GETCOUNT(2);

 GETCOUNT(3); GETCOUNT(4); GETCOUNT(5);

}
__m128i shuffle1 = _mm_shuffle_epi32(count, _MM_SHUFFLE(1, 0, 3, 2));

count = _mm_add_epi32(count, shuffle1);

__m128i shuffle2 = _mm_shuffle_epi32(count, _MM_SHUFFLE(2, 3, 0, 1));

count = _mm_add_epi32(count, shuffle2);

return 10000 + _mm_cvtsi128_si32(count);

}

Since 10000 / 4 % 6 = 4 ,
we have four values that don't fit in the loop.
We deal with

those values up front,
and then enter the loop to get the rest.

This version runs in 467 time units,
which is 3% slower than the previous version.
So I guess

it's time to stop unrolling.
Let's go back to the previous version which ran faster.

The total improvement we got after all this tweaking
is speedup of 6.5× over the original

jumpless version.
And most of that improvement (5.7×) came from
unrolling the loop

fourfold.

Anyway, no real moral of the story today.
I just felt like tinkering.

Notes

¹ The
 _mm_loadu_si128
intrinsic is kind of weird.
Its formal argument is a
 __m128i* ,
but

since it is for loading unaligned data,
the formal argument really should be
 __m128i

__unaligned* .
The problem is that the __unaligned keyword
doesn't exist on x86

because prior to the introduction of MMX and SSE,
x86 allowed arbitrary misaligned data.

Therefore, you are in this weird situation where you have to
use an aligned pointer to access

unaligned data.

9/9

Bonus chatter: Clang at optimization level 3 does autovectorization.
It doesn't know some

of the other tricks, like converting
 x + 1
to
 x - (-1) , thereby saving an instruction and a

register.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

