The crazy world of stripping diacritics

=. devblogs.microsoft.com/oldnewthing/20141124-00

November 24, 2014

)
Raymond Chen

Today’s Little Program strips diacritics from a Unicode string. Why? Hey, I said that Little
Programs require little to no motivation. It might come in handy in a spam filter, since it was
popular, at least for a time, to put random accent marks on spam subject lines in order to
sneak past keyword filters. (It doesn’t seem to be popular any more.)

This is basically a C-ization of the C# code originally written by Michael Kaplan. Don’t forget

to read the follow-up discussion that notes that this can result in strange results.

First, let’s create our dialog box. Note that I intentionally give it a huge font so that the
diacritics are easier to see.

// scratch.h

#define IDD_SCRATCH 1

#define IDC_SOURCE 100

#define IDC_SOURCEPOINTS 101

#define IDC_DEST 102

#define IDC_DESTPOINTS 103

// scratch.rc

#include <windows.h>

#include "scratch.h"

IDD_SCRATCH DIALOGEX 0, 0, 320, 88

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU

Caption "Stripping diacritics"

FONT 20, "MS Shell Dlg"

BEGIN
LTEXT "Original:", -1, 4, 8, 38, 10
EDITTEXT IDC_SOURCE, 46, 6, 270, 12, ES_AUTOHSCROLL
LTEXT "", IDC_SOURCEPOINTS, 46, 22, 270, 12
LTEXT "Modified:", -1, 4, 40, 38, 10
EDITTEXT IDC_DEST, 46, 38, 270, 12, ES_AUTOHSCROLL
LTEXT "", IDC_DESTPOINTS, 46, 54, 270, 12
DEFPUSHBUTTON "OK", IDOK, 266, 70, 50, 14

END

Now the program that uses the dialog box.

1/9

https://devblogs.microsoft.com/oldnewthing/20141124-00/?p=43553
http://www.siao2.com/2005/02/19/376617.aspx
http://www.siao2.com/2007/05/14/2629747.aspx

// scratch.cpp

#define STRICT

#define UNICODE

#define _UNICODE

#include <windows.h>

#include <windowsx.h>

#include <strsafe.h>

#include "scratch.h"

#define MAXSOURCE 64

void SetDlgItemCodePoints(HWND hwnd, int idc, PCWSTR psz)

{

The SetDlgItemCodePoints function takes a UTF-16 string and prints all the code points.
This is just to help visualize the result; it’s not part of the actual diacritic-removal algorithm.

wchar_t szResult[MAXSOURCE * 4 * 5];
szResult[0] = 0;
PWSTR pszResult = szResult;
size_t cchResult = ARRAYSIZE(szResult);
HRESULT hr = S_OK;
for (; SUCCEEDED(hr) && *psz; psz++) {

wchar_t szPoint[6];

hr = StringCchPrintf(szPoint, ARRAYSIZE(szPoint), L"%04x ", *psz);

if (SUCCEEDED(hr)) {

hr = StringCchCatEx(pszResult, cchResult, szPoint, &pszResult, &cchResult, 0);

}
SetDlgItemText(hwnd, idc, szResult);

void OnUpdate(HWND hwnd)

{

wchar_t szSource[MAXSOURCE];
GetDlgItemText(hwnd, IDC_SOURCE, szSource, ARRAYSIZE(szSource));
wchar_t szDest[MAXSOURCE * 4];
int cchActual = NormalizeString(NormalizationKD,
szSource, -1,
szDest, ARRAYSIZE(szDest));
if (cchActual <= 0) szDest[0] = 0;
WORD rgType[ARRAYSIZE(szDest)];
GetStringTypeW(CT_CTYPE3, szDest, -1, rgType);
PWSTR pszWrite = szDest;
for (int i1 = 0; szDest[i]; i++) {
if (!(rgType[i] & C3_NONSPACING)) {
*pszWrite++ = szDest[i];

}

*pszWrite = 0;

SetDlgItemText(hwnd, IDC_DEST, szDest);
SetDlgItemCodePoints(hwnd, IDC_SOURCEPOINTS, szSource);
SetDlgItemCodePoints(hwnd, IDC_DESTPOINTS, szDest);

2/9

Okay, here’s where the actual work happens. We put the source string into Normalization
Form KD. This decomposes the diacritics so that we can identify them with GetString-

TypeW and then strip them out.

Of course, in real life, you wouldn’t hard-code the array sizes like I did here, but this is just a

Little Program, and Little Programs are allowed to take shortcuts.

The rest of the program is just a framework to get into that function.

INT_PTR CALLBACK DlgProc(HWND hwnd, UINT wm,

switch (wm)

{

WPARAM wParam,

case WM_INITDIALOG:

return TRUE;

case WM_COMMAND:

switch (GET_WM_COMMAND_ID(wParam, lParam)) {

case IDC_SOURCE:
switch (GET_WM_COMMAND_CMD(wParam, lParam)) {

case EN_UPDATE:
OnUpdate(hwnd);

}

break;

}

break;

case IDOK:

EndDialog(hwnd, 0);
return TRUE;

break;
case WM_CLOSE:
EndDialog(hwnd, 0);
return TRUE;

}

return FALSE;

}

int WINAPI wWinMain(HINSTANCE hinst,

{

LPARAM lParam)

HINSTANCE hinstPrev,

LPWSTR lpCmdLine, int nShowCmd)

DialogBox(hinst, MAKEINTRESOURCE(IDD_SCRATCH), nullptr, DlgProc);

return 0;

Okay, let’s take this program for a spin. Here are some interesting characters to try:

Original character

Resulting character

a

00AA

Feminine ordinal indicator

a

0061

Latin small letter a

3/9

T 1 00B1 Superscript one 1 | 0031 Digit one
Y2 | 00BD | Vulgar fraction one half 12 | 0031 Digit one + Fraction slash
2044 + Digit two
0032
1| 0131 Latin small letter dotless i 1| 0131 Latin small letter dotless i
@ | 00D8 Latin capital letter O with Disappears!
stroke
t | 0142 Latin small letter | with bt | 0142 Latin small letter | with
stroke stroke
I | 0140 Latin small letter | with [- | 006C Latin small letter | + middle
middle dot 00B7 dot
2 | O0OE6 Latin small letter ae & | OOE6 Latin small letter ae
H | 0389 Greek capital letter Eta with | H | 0397 Greek capital letter Eta
tonos
A | 0410 Cyrillic capital letter A A | 0410 Cyrillic capital letter A
00C5 Latin capital letter A with A | 0041 Latin capital letter A
ring above
A | FF21 Fullwidth Latin capital letter | A | 0041 Latin capital letter A
A
2460 Circled digit one 1 | 0031 Digit one
@ | 2780 Dingbat circled sans-serif ® | 2780 Dingbat circled sans-serif
digit one digit one
® | 00AE Registered sign ® | 00AE Registered sign
® | 24c7 Circled Latin capital letter R | R | 0052 Latin capital letter R
p | D835 Mathematical bold Fraktur p | 0070 Latin small letter p
DD95 small p
¥ | FF6C Halfwidth Katakana letter + | 30E3 Katakana letter small Ya
small Ya
+ | 30E3 Katakana letter small Ya + | 30E3 Katakana letter small Ya
I | 30B4 Katakana letter Go 3 | 30B3 Katakana letter Ko
“1201C Left double quotation mark “ 1201C Left double quotation mark

4/9

"1 201D Right double quotation ” 1 201D Right double quotation
mark mark
, | 201E Double low-9 quotation . | 201E Double low-9 quotation
mark mark
‘| 201F Double high-reversed-9 ‘| 201F Double high-reversed-9
quotation mark quotation mark
" 12033 Double prime " 12032 Prime + Prime
2032
2035 Reverse prime * 1 2035 Reverse prime
< | 2039 Single left-pointing angle < | 2039 Single left-pointing angle
quotation mark quotation mark
« | OOAB Left-pointing double angle « | O0AB Left-pointing double angle
quotation mark quotation mark
— | 2014 Em-dash — | 2014 Em-dash
203C Double exclamation mark M| 0021 Exclamation mark +
0021 Exclamation mark

There are some interesting quirks here. Mind you, this is what the Unicode Consortium says,
so if you think they are wrong, you can take it up with them.

The superscript-like characters are converted to their plain versions. Enclosed alphabetics
are also converted, but not the ® symbol. Fullwidth forms of Latin letters are converted to
their halfwidth equivalents. On the other hand, halfwidth Katakana characters are expanded
to their fullwidth equivalents. But small Katakana does not convert to their large equivalents.

The @ disappears completely! What’s up with that? The character code for @ is reported as

C3_ALPHA | C3_NONSPACING | C3 _DIACRITIC , and since we are removing nonspacing
characters, this causes it to be removed. (Why is @ nonspacing? It occupies space!) For
whatever reason, it does not decompose into O + Combining Solidus Overlay. On the other
hand, the Polish } remains intact because it is reported as C3_ALPHA | C3_DIACRITIC .
Poland wins and Norway loses?

The diacritic removal ignores linguistic rules. The Swedish A decomposes into a capital A and
a combining ring above, even though in Swedish, the character is considered
nondecomposable. (Just like the capital letter Q in English does not decompose into an O
and a tail.) Katakana Go suffers a similar ignoble fate, converting to Katakana Ko, which is
linguistically nonsensical. But then again, removing diacritics is already linguistically
nonsensical. Nonsensical operation is nonsensical.

5/9

http://www.siao2.com/2007/05/14/2629747.aspx

There is no attempt to unify look-alike characters from different scripts. Look-alike
characters in the Greek and Cyrillic alphabets are not mapped to their Latin doppelgangers.

The infamous Turkish dotless i does not turn into a dotted i. (And the lowercase Latin i does
not decompose into a combining dot and a dotless i.)

Finally, I tried a selection of punctuation marks. Most of them pass through unchanged, with
the exception of the double prime and double exclamation mark which each decompose into
a pair of singles. (But double quotation marks do not decompose into a pair of singles.)

Okay, but the goal of this exercise was spam detection, so we are actually interested in
mapping as far as possible all the way down to plain ASCII. We’d like to convert, for example,
the look-alike characters in the Cyrillic and Greek alphabets to the Latin characters they
resemble.

So let’s try something else. If we want to convert to ASCII, then just convert to ASCII!

#define CP_ASCII 20127

void OnUpdate(HWND hwnd)

{
wchar_t szSource[MAXSOURCE];
GetDlgItemText(hwnd, IDC_SOURCE, szSource, ARRAYSIZE(szSource));
char szDest[MAXSOURCE * 2];
int cchActual = wideCharToMultiByte(CP_ASCII, O, szSource, -1,

szDest, ARRAYSIZE(szDest), 0, 0);

if (cchActual <= 0) szDest[0] = 0;
SetDlgItemTextA(hwnd, IDC_DEST, szDest);
SetDlgItemCodePoints(hwnd, IDC_SOURCEPOINTS, szSource);

}

We can extend the table above with a new column.

Original character KD character ASCII character

a | 00AA | Feminine ordinal a | 0061 Latin small letter | a | 0061 | Latin small

indicator a letter a
' |1 00B1 | Superscript one 1 | 0031 Digit one 1 | 0031 | Digit one
Y2 | 00BD | Vulgar fraction 12 | 0031 Digit one + ? No

one half 2044 Fraction slash + conversion

0032 | Digit two

I | 0131 | Latin small letter I 0131 Latin small letter | i | 0069 | Latin small
dotless i dotless i letter i

6/9

00D8 | Latin capital Disappears! O | 004F | Latin
letter O with capital
stroke letter O
0142 | Latin small letter 0142 Latin small letter | | | 006C | Latin small
| with stroke | with stroke letter |
0140 | Latin small letter 006C | Latin small letter | ? No
| with middle dot 0ooB7 | + middle dot conversion
OOE6 | Latin small letter OOE®6 Latin small letter | a | 0061 | Latin small
ae ae letter a
0389 | Greek capital 0397 | Greek capital ? No
letter Eta with letter Eta conversion
tonos
0410 | Cyrillic capital 0410 | Cyrillic capital ? No
letter A letter A conversion
00C5 | Latin capital 0041 Latin capital A | 0041 | Latin
letter A with ring letter A capital
above letter A
FF21 | Fullwidth Latin 0041 Latin capital A | 0041 | Latin
capital letter A letter A capital
letter A
2460 | Circled digit one 0031 Digit one ? No
conversion
2780 | Dingbat circled 2780 | Dingbat circled ? No
sans-serif digit sans-serif digit conversion
one one
O0AE | Registered sign O0AE | Registeredsign | R | 0052 | Latin
capital
letter R
24c7 | Circled Latin 0052 | Latin capital ? No
capital letter R letter R conversion
D835 | Mathematical 0070 Latin small letter | ?7? No
DD95 | bold Fraktur p conversion
small p
FF6C | Halfwidth 30E3 Katakana letter ? No
Katakana letter small Ya conversion
small Ya
30E3 | Katakana letter 30E3 Katakana letter ? No
small Ya small Ya conversion

7/9

O | 30B4 | Katakana letter 3 | 30B3 | Katakana letter ? No
Go Ko conversion
“ | 201C | Left double “ 1201C | Left double “ 10022 | Quotation
quotation mark quotation mark mark
” |1 201D | Right double ” 1 201D | Right double “ 10022 | Quotation
quotation mark quotation mark mark
, | 201E | Double low-9 » | 201E | Double low-9 “ 10022 | Quotation
quotation mark quotation mark mark
“ | 201F | Double high- “ | 201F | Double high- ? No
reversed-9 reversed-9 conversion
quotation mark quotation mark
" | 2033 | Double prime " 12032 | Prime + Prime ? No
2032 conversion
"1 2032 | Prime " 12032 Prime ‘10027 | Apostrophe
2035 | Reverse prime 2035 | Reverse prime 0060 | Grave
accent
< | 2039 | Single left- <« | 2039 | Single left- < | 003C | Less-than
pointing angle pointing angle sign
quotation mark quotation mark
« | O0AB | Left-pointing « | O0AB | Left-pointing < | 003C | Less-than
double angle double angle sign
quotation mark quotation mark
— | 2014 | Em-dash — | 2014 | Em-dash — | 002D | Hyphen-
minus
203C | Double Il |1 0021 Exclamation ? No
exclamation 0021 mark + conversion
mark Exclamation
mark

There are some interesting differences here.

Some characters fail to convert to ASCII outright. This is not unexpected for the Japanese

characters, is mildly unexpected for the look-alikes in the Cyrillic and Greek alphabets, and is
surprising for some characters like double prime, double exclamation point, enclosed
alphanumerics, and vulgar fractions because they had ASCII decompositions in
Normalization Form KD, but converting directly into ASCII refused to use them.

But the dotless i gets its dot back.

8/9

Another weird thing you might notice is that the @& converts to just the a. This goes contrary
to the expectations of American English, because words which historically use the & and ce
are largely respelled in American English to use just the e. (Encyclopaedia — encyclopedia,
foetus — fetus.) Mysteries abound.

If your real goal is to map every character to its nearest ASCII look-alike, then all these code
page games are just beating around the bush. The way to go is to use the Unicode
Confusables database. There is a huge data file and instructions on how to use it. There’s also

a nice Web site that lets you explore the confusables database interactively.

Or you could just take the sledgehammer approach: If there are a significant number of
characters outside the Latin alphabet and punctuation and you are expecting English text,
then just reject it as likely spam.

ofio}

Raymond Chen

Follow

9/9

http://www.unicode.org/Public/security/revision-05/confusables.txt
http://www.unicode.org/reports/tr39/#Confusable_Detection
http://unicode.org/cldr/utility/confusables.jsp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

