
1/2

October 23, 2014

How can I detect programmatically whether the /3GB
switch is enabled?

devblogs.microsoft.com/oldnewthing/20141023-00

Raymond Chen

A customer was doing some diagnostic work and wanted a way to detect
whether the
 /3GB

switch was enabled.
(Remember that the /3GB switch is
meaningful only for 32-bit versions

of Windows.)

The way to detect the setting is to call
 GetSystemInfo and look at the
 lpMaximum‐

ApplicationAddress .

#include <windows.h>

#include <stdio.h>

int __cdecl main(int, char **)

{

SYSTEM_INFO si;

GetSystemInfo(&si);

printf("%p", si.lpMaximumApplicationAddress);

return 0;

}

Compile this as a 32-bit program
and run it.

Configuration
LARGEADDRESS-
AWARE? Result Meaning

32-bit Windows, standard
configuration

Any 7FFEFFFF 2GB
minus
64KB

32-bit Windows, /3GB Any BFFFFFFF 3GB

32-bit Windows,
increaseuserva =
2995

Any BB3EFFFF 2995 MB

64-bit Windows No 7FFEFFFF 2GB minus
64KB

https://devblogs.microsoft.com/oldnewthing/20141023-00/?p=43783
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/10/08/55239.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff542202(v=vs.85).aspx

2/2

64-bit Windows Yes FFFEFFFF 4GB minus
64KB

On 32-bit systems, this reports the system-wide setting that
specifies the maximum user-

mode address space,
regardless of how your application is marked.
Note, however, that your

application must be marked
 LARGEADDRESSAWARE
in order to take advantage of the space

above 2GB.

On the other hand,
when you run a 32-bit application on 64-bit Windows,
it runs the

application in an emulation layer.
Therefore, 64-bit Windows can give each application a

different view of
the system.
In particular, depending on how your application is marked,

Windows can emulate a 32-bit system with or without the
 /3GB switch enabled,
based on

what the application prefers.

Armed with this knowledge, perhaps you can help this customer.
Remember, you sometimes

need to
go beyond simply answering the question
and actually solve the customer’s problem.

We would like to know how to detect from our 32-bit application
whether the host operating
system is 64-bit or 32-bit.

We need to know this because our program does some data processing,
and we have to choose
an appropriate algorithm.
We have written one algorithm that is faster but uses
1½GB
of
address space,
and we have also written
a fallback algorithm that is slower but does not
use
anywhere near as much address space.
When running on a native 32-bit system,
there is
typically not 1½GB of address space available,
so we have to use the slow algorithm.
But when
running on a native 64-bit system
(or a native 32-bit system with the /3GB switch enabled),
our program can use the fast algorithm.
Therefore, we would like to detect
whether the native
operating system
is 64-bit so that we can decide whether to use the fast or slow algorithm.

Here’s another customer question you can now answer:

We have a 64-bit program, and since we know that Windows currently
does not use the full 64-
bit address space,
we would like to
steal the upper bits of the pointer to hold additional
information:
If there are at least 8 bits available, we can use a more efficient
data format.
Otherwise, we fall back to a less efficient format.
How can we detect whether the upper 8 bits
are being used for
addressing?

Update: Clarified the table based on misunderstanding
in comments.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2005/06/01/423817.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2008/12/22/9244582.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/06/20/10427187.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366778(v=vs.85).aspx#memory_limits
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

