
1/2

October 20, 2014

Scripting an Internet Explorer window
devblogs.microsoft.com/oldnewthing/20141020-00

Raymond Chen

Today’s Little Program takes a random walk through MSDN
by starting at the Create‐

Process page
and randomly clicking links.
The exercise is not as important as the technique

it demonstrates.

function randomwalk(ie, steps) {

for (var count = 0; count < steps; count++) {

 WScript.StdOut.WriteLine(ie.document.title);

 var links = ie.document.querySelectorAll("#mainSection a");

 do {

 var randomLink = links[Math.floor(Math.random() * links.length)];

 } while (randomLink.protocol != "http:");

 WScript.StdOut.WriteLine("Clicking on " + randomLink.innerText);

 randomLink.click();

 while (ie.busy) WScript.Sleep(100);

}
}

(I’m assuming the reader can figure out what language this script is
written in.
If you have to

ask, then you probably won’t understand this article
at all.
I am also not concerned with

random number bias because Little Program.)

To talk a random walk through MSDN,
we ask for all the links in the
 mainSection element.

Note that I’m taking an undocumented dependency on the structure
of MSDN pages.
This

structure has changed in the past,
so be aware that the script may stop working at any time

if the MSDN folks choose to reorganize their pages.
I’m not too worried since this is a

demonstration,
not production code.
In real life, you are probably going to script a Web page

that
your team designed (as part of automated testing),
so taking a dependency on the DOM

is something the QA team
can negotiate with the development team.
(If your real life scenario

really is walking through the MSDN
content, then you should use the
MSDN content API.

Here’s sample code.)

Anyway, we grab a link at random,
but throw away anything that is not an http: link.
This

avoids us accidentally navigating into a mailto: link,
for example.

https://devblogs.microsoft.com/oldnewthing/20141020-00/?p=43813
http://services.msdn.microsoft.com/ContentServices/ContentService.asmx
http://msdn.microsoft.com/en-us/magazine/cc163541.aspx

2/2

We then invoke the click() method on the link to
simulate the user clicking on it.
We

could also have just navigated to
 randomLink.href ,
but I’m using the click() method

because it is more general.
Your script may want to tick some checkboxes and then click
the

Submit button,
and those actions can’t be performed by navigation.

We then wait for the Web page to settle down.
I’m lazy and am simply using a polling loop.
If

you want to be clever,
you could listen on the
 onreadystatechange event,
but this is just a

Little Program, so I’m content to just poll.

Once we have settled on the new page,
we loop back and do it again.

Now we just need to drive this helper function.

var ie = new ActiveXObject("InternetExplorer.Application");

ie.visible = true;

ie.navigate("http://msdn.microsoft.com/ms682425");

// Wait for it to load

while (ie.busy) WScript.Sleep(100);

randomwalk(ie, 10);

ie.Quit();

We create our own instance of Internet Explorer
so we can change its carpet
without getting

anybody upset,
navigate it to the
 CreateProcess page,
and wait for the page to load.
We

then use our randomwalk function to
click on ten successive links,
and then when we’re

done, we
bring in the demolition crew to destroy the browser we created.

For extra evil, you could commandeer an existing Internet Explorer
window
rather than

creating your own.
(Now you’re barging into somebody’s house and rearranging the

furniture.)

var shellWindows = new ActiveXObject("Shell.Application").Windows();

for (var i = 0; i < shellWindows.Count; i++) {

var w = shellWindows.Item(i);

if (w.name == "Windows Internet Explorer") {

 randomwalk(w, 10);

 break;

}
}

Making the appropriate changes to randomwalk so
as not to be MSDN-specific is left as an

exercise.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2009/12/02/9931183.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/11/18/10238335.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

