
1/3

October 17, 2014

When are global objects constructed and destructed by
Visual C++?

devblogs.microsoft.com/oldnewthing/20141017-00

Raymond Chen

Today we’re going to fill in the following chart:

When does it run? Constructor Destructor

Global object in EXE

Global object in DLL

The C++ language specification provides some leeway to
implementations on when global

static objects are constructed.
It can construct the object before main begins,
or it construct

the object on demand according to complicated rules.
You can read [basic.start.init] for the

gory details.

Let’s assume for the sake of discussion that global static
objects are constructed before

main begins.

For global objects in the EXE, constructing them is no big deal
because the C runtime startup

code linked into the EXE does
a bunch of preparation before calling the formal entry point,

be it main or
 wWinMain or whatever.
And part of that preparation is calling constructors

for
global objects.
Since the C runtime startup code is in charge,
it can construct the objects

right there.

When does it run? Constructor Destructor

Global object in EXE C runtime startup code

Global object in DLL

https://devblogs.microsoft.com/oldnewthing/20141017-00/?p=43823

2/3

DLLs are similar:
The formal DllMain entry point is not
the actual entry point to the DLL.

Instead, the entry point is a function provided by the C runtime,
and that function does work

before and after calling the
 DllMain function provided by the application.
We saw this

earlier when we discussed
what happens if you return FALSE
from
DLL_PROCESS_ATTACH.

Part of this extra work done by the C runtime library is to
construct DLL globals in

DLL_PROCESS_ATTACH
and to destruct them in
 DLL_PROCESS_DETACH .
In other words, the

code conceptually goes like this:

BOOL CALLBACK RealDllMain(

 HINSTANCE hinst, DWORD dwReason, void *pvReserved)

{

 ...

 case DLL_PROCESS_ATTACH:

 Initialize_C_Runtime_Library();

 Construct_DLL_Global_Objects();

 DllMain(hinst, dwReason, pvReserved);

 ...

case DLL_PROCESS_DETACH:

 DllMain(hinst, dwReason, pvReserved);

 Destruct_DLL_Global_Objects();

 Uninitialize_C_Runtime_Library();

 break;

...

}

Of course, the actual code is more complicated than this,
but that’s the basic idea.
We can fill

in two more cells in our table.

When does it
run? Constructor Destructor

Global
object in
EXE

C runtime startup code

Global
object in
DLL

C runtime
DLL_PROCESS_ATTACH
prior to
DllMain

C runtime DLL_PROCESS_DETACH
after DllMain returns

The last entry in our table is the tricky one:
Who triggers the destruction of global objects in

the EXE destructed?
The C runtime startup code in the EXE is guaranteed to run at process

startup, but how does the C runtime cleanup code run?

The answer is that the C runtime library
hires a lackey.
The hired lackey is the C runtime

library DLL
(for example,
 MSVCR80.DLL).
The C runtime startup code in the EXE
registers

all the destructors with the C runtime library DLL,
and when the C runtime library DLL gets

http://blogs.msdn.com/b/oldnewthing/archive/2008/08/08/8841951.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2014/10/16/10565024.aspx
http://msdn.microsoft.com/library/tze57ck3

3/3

its
 DLL_PROCESS_DETACH ,
it calls all the destructors requested by the EXE.

That’s the final cell in our table.

When does it
run? Constructor Destructor

Global
object in
EXE

C runtime startup code C runtime DLL hired lackey

Global
object in
DLL

C runtime
DLL_PROCESS_ATTACH
prior to
DllMain

C runtime DLL_PROCESS_DETACH
after DllMain returns

You can now answer this customer question and explain the
observed behavior:

Is it okay to call LoadLibrary
from within constructors of global C++ objects inside a DLL?
Currently we am seeing weird behavior when doing so.

The customer went on to describe what they were observing.
Their DLL has global C++

objects which do the following
operations in their constructor:

Check a setting.

If the setting is enabled, call
 LoadLibrary to load a helper DLL,
then call a function

in the helper DLL,
The result of that function call alters the global behavior
of the

original DLL.

The function in the helper DLL
creates a thread
then waits for the thread to produce a

result.

The helper thread never gets started.

Result: Process hangs.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

