
1/2

October 16, 2014

If only DLLs can get DllMain notifications, how can an
EXE receive a notification when a thread is created (for
example)?

devblogs.microsoft.com/oldnewthing/20141016-00

Raymond Chen

When a DLL is loaded, it receives a
 DLL_PROCESS_ATTACH notification,
and when it is

unloaded (or when the process terminates),
it gets a
 DLL_PROCESS_DETACH notification.

DLLs also receive
 DLL_THREAD_ATTACH notifications
when a thread is created and

DLL_THREAD_DETACH notifications
when a thread exits.
But what if you are an EXE?
EXEs

don’t have a DllMain ,
so there is no way to receive these notifications.

The trick here is to hire a lackey.

Create a helper DLL, called, say, LACKEY.DLL .
Your EXE links to the lackey,
and the lackey’s

job is to forward all
 DllMain notifications back to your EXE.
The DLL would naturally have

to have a way for your EXE
to provide the callback address,
so
you might have a function

RegisterLackeyCallback .

typedef BOOL (CALLBACK *LACKEYNOTIFICATION)(DWORD dwReason);

LACKEYNOTIFICATION g_lackeyNotification;

void RegisterLackeyCallback(LACKEYNOTIFICATION lackeyNotification)

{

g_lackeyNotification = lackeyNotification;

}

BOOL WINAPI DllMain(

 HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved)

{

if (g_lackeyNotification) g_lackeyNotification(dwReason);

return TRUE;

}

Of course, it is rather extravagant to hire a lackey just for
this one task,
so you will probably

just add lackey responsibilities to
some other DLL you’ve written.

I don’t know if there’s a name for this design pattern,
so I’m just going to call it the hired

lackey pattern.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/20141016-00/?p=43833
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

Follow

