
1/4

October 15, 2014

The GetCurrentThread function is like a check payable to
Bearer: What it means depends on who's holding it

devblogs.microsoft.com/oldnewthing/20141015-00

Raymond Chen

The GetCurrentThread function
returns a pseudo-handle to the current thread.
The

documentation
goes into significant detail
on what this means,
but I fear that it may have

fallen into the trap of providing
so much documentation that people decide to skip it.

Okay, so first of all, what is a pseudo-handle?
a pseudo-handle is a sentinel value for

HANDLE
that is not really a handle, but it can act like one.

The pseudo-handle returned by GetCurrentThread
means,
“The thread that this code is

running on.”
Note that this is a context-sensitive proposition.
All the text in MSDN is

explaining the consequences of that
sentence.

In a sense, the
 GetCurrentThread function is like a GPS:
It tells you where you are,
not

where you were.

Imagine somebody who had never seen a GPS before.
When they park their car in a parking

garage,
they look at the parking level number printed on the wall
and write it down.
Then

when somebody asks,
“Where did you park your car?”
they can look in their notebook and

say,
“Oh, it’s on level 3.”
Some parking garages even have little pads of paper with
the parking

level pre-printed on it.
When you park your car, you tear a piece of paper off the pad
and tuck

it into your purse or wallet.
Then when you want to return to your car,
you see the slip of

paper,
and it tells you where you parked.

Now suppose you hand that person a GPS device,
and tell them,
“This will tell you your

current location.”

“Great! My current location is level 3 of the parking garage.”

They go out shopping or whatever they were planning on
doing, and now it’s time to go

home.
They can’t remember where they parked, so they
look at the device, and it says,
“Your

current location is 512 Main Street.”

“Hey, you told me this told me where I parked my car.”

https://devblogs.microsoft.com/oldnewthing/20141015-00/?p=43843
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683182(v=vs.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/04/10/10409822.aspx

2/4

“No, I said that it told your current location.”

“That’s right.
And at the time you gave it to me,
my current location was level 3 of the parking

garage.
So I expect it to say ‘Level 3 of the parking garage’.”

“No, I mean it tells you your current location
at the time you look at it.”

“Well, that’s stupid. I can do that too.”
(Scribble.)
“There, it’s a piece of paper that says
‘You

are right here’.”

The value returned by the
 GetCurrentThread function is like the GPS,
or the slip of paper

that says
“You are right here.”
When you hand that value to the kernel,
it substitutes the

current thread
at the time you use it.
It’s like a check payable to Bearer:
The money goes to

whoever happens to take it to the bank.

This means, for example, that if you
call
 GetCurrentThread from one thread and pass the

result to another thread,
then when that other thread uses the
value, the kernel will interpret

to mean the thread that is using it,
not the thread that called GetCurrentThread .

It also means that the value cannot
be meaningfully cached to remember
the thread that

created the value,
because the point of GetCurrentThread is to adapt
to whoever happens

to be using it.

The theory behind GetCurrentThread and its friend
 GetCurrentProcess
is that it gives

you a convenient way to refer
to the current thread from the current thread
or the current

process from the current process.
For example, you might pass the return value of
 Get‐

CurrentProcess
to
 DuplicateHandle in order to
duplicate a handle into or out of the

current process.
Or you might pass the return value of GetCurrentThread
to
 SetThread‐

Priority to change the priority of
the current thread.
The “current thread” pseudo-handle

let you simplify this:

BOOL SetCurrentThreadPriority(int nPriority)

{

BOOL fSuccess = FALSE;

HANDLE hCurrentThread = OpenThread(THREAD_SET_INFORMATION,

 FALSE, GetCurrentThreadId());

if (hCurrentThread)

{
 fSuccess = SetThreadPriority(hCurrentThread, nPriority);

 CloseHandle(hCurrentThread);

}

to

3/4

BOOL SetCurrentThreadPriority(int nPriority)

{

return SetThreadPriority(GetCurrentThread(), nPriority);

}

If you want to convert a pseudo-handle to a real handle,
you can use the
 DuplicateHandle

function.

BOOL ConvertToRealHandle(HANDLE h,

 BOOL bInheritHandle,

 HANDLE *phConverted)

{

return DuplicateHandle(GetCurrentProcess(), h,

 GetCurrentProcess(), phConverted,

 0, bInheritHandle, DUPLICATE_SAME_ACCESS);

}

BOOL GetCurrentThreadHandle(BOOL bInheritHandle, HANDLE *phThread)

{

return ConvertToRealHandle(GetCurrentThread(), bInheritHandle, phThread);

}

BOOL GetCurrentProcessHandle(BOOL bInheritHandle, HANDLE *phProcess)

{

return ConvertToRealHandle(GetCurrentProcess(), bInheritHandle, phProcess);

}

Armed with your knowledge of pseudo-handles,
criticize the following code:

class CSingleThreadedObject

{

public:

CSingleThreadedObject() : _hThreadCreated(GetCurrentThread()) { }

bool OnCorrectThread() { return GetCurrentThread() == _hThreadCreated; }

private:

HANDLE _hThreadCreated;

};
class CFoo : protected CSingleThreadedObject

{

public:

CFoo() { ... }

// Every method of CFoo checks whether it is being called on the

// same thread that it was created from.

bool Snap()

{
 if (!OnCorrectThread()) return false; // multithreading not supported

 ...

}
};

Follow-up exercise:
Criticize the following code that attempts to address the issues
you

raised in the previous exercise.

4/4

// ignore error handling in this class for the purpose of the exercise

class CSingleThreadedObject

{

public:

CSingleThreadedObject() {

 ConvertToRealHandle(GetCurrentThread(), FALSE, &_hThreadCreated)

}

bool OnCorrectThread() {

 HANDLE hThreadCurrent;

 ConvertToRealHandle(GetCurrentThread(), FALSE, &hThreadCurrent);

 bool onCorrectThread = hThreadCurrent == _hThreadCreated;

 CloseHandle(hThreadCurrent);

 return onCorrectThread;

}
private:

HANDLE _hThreadCreated;

};

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

